概率论与数理统计 3 Discrete Random Variables and Probability Distributions(离散随机变量与概率分布) (上篇)

3.1 Random Variables

DEFINITION:

For a given sample space of some experiment, a random variable (rv) is any rule that associates a number with each outcome in(将数字与中每个结果关联起来) . In mathematical language, a random variable is a function whose domain is the sample space and whose range is the set of real numbers.

Random variables are customarily denoted by uppercase letters(大写字母表示), such as X and Y, near the end of our alphabet.We will now use lowercase letters to represent some particular value of the corresponding random variable(用小写字母来表示相应随机变量的某些特定值).

The notation X(s)=x means that x is the value associated with the outcome s by the rv X

DEFINITION:

Any random variable whose only possible values are 0 and 1 is called a Bernoulli random variable(伯努利随机变量).

Two Types of Random Variables

A discrete random variable(离散型随机变量) is an rv whose possible values either constitute a finite set(构成一个有限的集合) or else can be listed in an infinite sequence(在无限序列中列出) in which there is a first element, a second element, and so on ( “countably” infinite,无限可列).

A random variable is continuous(连续型随机变量) if both of the following apply:

  • Its set of possible values consists either of all numbers in a single interval on the number line(数轴上单个区间内的所有数字) (possibly infinite in extent(可能是无限的范围),e.g.,from - ∞ \infty to ∞ \infty )or all numbers in a disjoint union of such intervals(这些区间的不相交并集中的所有数,e.g., [ 0 , 10 ] ∪ [ 20 , 30 ] \left[0,10 \right]\cup\left[20,30 \right] [0,10][20,30])
  • No possible value of the variable has positive probability, that is, P(X = c) = 0 for any possible value c.

3.2 Probability Distributions for Discrete Random Variables

p(x) will denote the probability assigned to the value x, i.e.,p(i)=P(X=i).

DEFINITION:

The probability distribution(概率分布) or probability mass function (概率质量函数,pmf) of a discrete rv is defined for every number x by . p(x) = P(X = x) = P(all s ∈ \in S: X(s)=x).

The conditions p ( x ) ≥ 0 p(x)\ge 0 p(x)0and ∑ a l l p o s s i b l e x p ( x ) = 1 \sum_{all \hspace{1mm} possible \hspace{1mm}x}^{} p(x)=1 allpossiblexp(x)=1 are required of any pmf.

A Parameter of a Probability Distribution

DEFINITION:

Suppose p(x) depends on a quantity that can be assigned any one of a number of possible values, with each different value determining a different probability distribution. Such a quantity is called a parameter of the distribution. The collection of all probability distributions for different values of the parameter is called a family(族) of probability distributions.

e.g.,

在这里插入图片描述

The Cumulative Distribution Function(累积分布函数)

DEFINITION:

The cumulative distribution function (cdf) F(x) of a discrete rv variable X with pmf p(x) is defined for every number x by

F ( x ) = P ( X ≤ x ) = ∑ y : y ≤ x p ( y ) F(x)=P(X \leq x)=\sum_{y:y\leq x}^{} p(y) F(x)=P(Xx)=y:yxp(y)

For any number x, F(x) is the probability that the observed value of X will be at most x.

For X a discrete rv, the graph of F(x) will have a jump at every possible value of X and will be flat(平的) between possible values. Such a graph is called a step function(跳跃函数).

e.g.,

在这里插入图片描述

PROPOSITION:

For any two numbers a and b with a ≤ b a\leq b ab,

P ( a ≤ X ≤ b ) = F ( b ) − F ( a − ) P(a\leq X \leq b)=F(b)-F(a-) P(aXb)=F(b)F(a)

where “a-” represents the largest possible X value that is strictly less than a.

In particular, if the only possible values are integers and if a and b are integers, then

P ( a ≤ X ≤ b ) = P ( X = a o r a + 1 o r . . . o r b ) = F ( b ) − F ( a − 1 ) P(a\leq X \leq b)=P(X=a\hspace{1mm}or\hspace{1mm}a+1\hspace{1mm}or...or\hspace{1mm}b)=F(b)-F(a-1) P(aXb)=P(X=aora+1or...orb)=F(b)F(a1)

Taking a=b yields P(X = a) = F(a) - F(a - 1) in this case.

3.3 Expected Values

The Expected Value of X

DEFINITION:

Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X) or μ X μ_X μX or just μ \mu μ, is

E ( X ) = μ X = ∑ x ∈ D x ⋅ p ( x ) E(X)=\mu_X=\sum_{x \in D}^{} x\cdot p(x) E(X)=μX=xDxp(x)

The Expected Value of a Function

Sometimes interest will focus on the expected value of some function h(X) rather than on just E(X).

PROPOSITION:

If the rv X has a set of possible values D and pmf p(x), then the expected value of any function h(X), denoted by E[h(X)] or μ h ​ ( X ) μ_{h​(X)} μh(X) , is computed by

E [ h ( X ) ] = ∑ D h ( x ) ⋅ p ( x ) E[h(X)]=\sum_{D}^{} h(x)\cdot p(x) E[h(X)]=Dh(x)p(x)

Rules of Expected Value

The h(X) function of interest is quite frequently a linear function . In this case, E[h(X)] is easily computed from E(X).

PROPOSITION:

E ( a X + b ) = a ⋅ E ( X ) + b E(aX+b)=a\cdot E(X) + b E(aX+b)=aE(X)+b

(Or, using alternative notation, μ a X + b = a ⋅ μ X + b \mu_{aX+b}=a\cdot \mu_X+b μaX+b=aμX+b)

Two special cases of the proposition yield two important rules of expected value.

  • For any constant a, E ( a X ) = a ⋅ E ( X ) E(aX) = a \cdot E(X) E(aX)=aE(X) (take b = 0)
  • For any constant b, E ( X + b ) = E ( X ) + b E(X+b)=E(X)+b E(X+b)=E(X)+b (take a = 1)

The Variance of X

The expected value of X describes where the probability distribution is centered(概率分布的中心位置). Using the physical analogy(类比) of placing point mass p(x) at the value x on a onedimensional axis, if the axis were then supported by a fulcrum(支点) placed at μ \mu μ, there would be no tendency for the axis to tilt(该轴没有倾斜的趋势).

在这里插入图片描述

DEFINITION:

Let X have pmf p(x) and expected value μ \mu μ. Then the variance of X, denoted by V(X) or σ X 2 \sigma_X^2 σX2, or just σ 2 \sigma^2 σ2, is

V ( X ) = ∑ D ( x − μ ) 2 ⋅ p ( x ) = E [ ( X − μ ) 2 ] V(X)=\sum_{D}^{} (x-\mu)^2\cdot p(x)=E[(X-\mu)^2] V(X)=D(xμ)2p(x)=E[(Xμ)2]

The standard deviation (SD) of X is

σ X = σ X 2 \sigma_X=\sqrt{\sigma_X^2} σX=σX2

A Shortcut Formula for σ 2 \sigma^2 σ2

The number of arithmetic operations necessary to compute σ 2 \sigma^2 σ2 can be reduced by using an alternative formula.

PROPOSITION:

V ( X ) = σ 2 = [ ∑ D x 2 ⋅ p ( x ) ] − μ 2 = E ( X 2 ) − [ E ( X ) ] 2 V(X)=\sigma^2=[\sum_D^{}x^2\cdot p(x)]-\mu^2=E(X^2)-[E(X)]^2 V(X)=σ2=[Dx2p(x)]μ2=E(X2)[E(X)]2

Rules of Variance

PROPOSITION:

V ( a X + b ) = σ a X + b 2 = a 2 ⋅ σ X 2 a n d σ a X + b = ∣ a ∣ ⋅ σ X V(aX+b)=\sigma_{aX+b}^2=a^2\cdot\sigma_X^2 \hspace{1mm} and \hspace{1mm} \sigma_{aX+b}=|a|\cdot \sigma_X V(aX+b)=σaX+b2=a2σX2andσaX+b=aσX

In particular,

σ a X = ∣ a ∣ ⋅ σ X , σ X + b = σ X \sigma_{aX}=|a|\cdot \sigma_X,\sigma_{X+b}=\sigma_X σaX=aσX,σX+b=σX

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lum0s!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值