概率论与数理统计 3 Discrete Random Variables and Probability Distributions(离散随机变量与概率分布) (下篇)

3.4 The Binomial Probability Distribution(二项分布)

There are many experiments that conform either exactly or approximately to the following list of requirements(完全或近似地符合下列要求):

  1. The experiment consists of a sequence of n smaller experiments called trials(试验), where n is fixed in advance of the experiment.
  2. Each trial can result in one of the same two possible outcomes (dichotomous trials,二分试验), which we generically denote by success (S) and failure (F).
  3. The trials are independent, so that the outcome on any particular trial does not influence the outcome on any other trial(任何特定试验的结果不会影响任何其他试验的结果).
  4. The probability of success P(S) is constant from trial to trial; we denote this probability by p.

DEFINITION:

An experiment for which Conditions 1–4 are satisfied is called a binomial experiment

We will use the following rule of thumb(经验法则) in deciding whether a "without replacement(拿出不放回)"experiment can be treated as a binomial experiment.

RULE:

Consider sampling without replacement from a dichotomous population of size N. If the sample size (number of trials) n is at most 5% of the population size, the experiment can be analyzed as though it were exactly a binomial experiment.

The Binomial Random Variable and Distribution

DEFINITION:

The binomial random variable X associated with a binomial experiment consisting of n trials is defined as

X = t h e n u m b e r o f S ′ s a m o n g t h e n t r i a l s X=the \hspace{1mm} number \hspace{1mm} of \hspace{1mm} S's \hspace{1mm} among \hspace{1mm} the \hspace{1mm} n \hspace{1mm}trials X=thenumberofSsamongthentrials

NOTATION:

Because the pmf of a binomial rv X depends on the two parameters n and p, we denote the pmf by b(x; n, p).

THEOREM:

b ( x ; n , p ) = { ( n x ) p x ( 1 − p ) n − x , x = 0 , 1 , 2 , . . . , n 0 , o t h e r w i s e b(x;n,p) =\begin{cases} \dbinom{n}{x}p^x(1-p)^{n-x}, x= 0,1,2,...,n \\0, otherwise \end{cases} b(x;n,p)=(xn)px(1p)nx,x=0,1,2,...,n0,otherwise

Using Binomial Tables*

NOTATION:

For X~Bin(n,p), the cdf will be denoted by

B ( x ; n , p ) = P ( X ≤ x ) = ∑ y = 0 x b ( y ; n , p ) x = 0 , 1 , . . . , n B(x;n,p)=P(X \leq x) = \sum_{y=0}^x b(y;n,p) \hspace{1cm} x=0,1,...,n B(x;n,p)=P(Xx)=y=0xb(y;n,p)x=0,1,...,n

The Mean and Variance of X

PROPOSITION:

If X~Bin(n,p), then E(X)=np, V(X)=np(1-p)=npq, and σ X \sigma_X σX= n p q \sqrt{npq} npq (where q = 1 - p).

3.5 Hypergeometric and Negative Binomial Distributions(超几何分布和负二项分布)

The Hypergeometric Distribution

The assumptions leading to the hypergeometric distribution are as follows:

  1. The population or set to be sampled consists of N individuals, objects, or elements (a finite population).
  2. Each individual can be characterized as a success (S) or a failure (F), and there are M successes in the population.
  3. A sample of n individuals is selected without replacement in such a way that each subset of size n is equally likely to be chosen.

PROPOSITION:

If X is the number of S’s in a completely random sample of size n drawn from a population consisting of M S’s and (N-M)F’s, then the probability distribution of X, called the hypergeometric distribution, is given by

P ( X = x ) = h ( x ; n , M , N ) = ( M x ) ( N − M n − x ) ( N n ) P(X=x)=h(x;n,M,N)=\frac{\dbinom{M}{x}\dbinom{N-M}{n-x}}{\dbinom{N}{n}} P(X=x)=h(x;n,M,N)=(nN)(xM)(nxNM)

for x, an integer, satisfying max(0,n-N+M) ≤ \leq x ≤ \leq min(n,M).

PROPOSITION:

The mean and variance of the hypergeometric rv X having pmf h(x; n, M, N) are

E ( X ) = n ⋅ M N V ( X ) = ( N − n N − 1 ) ⋅ n ⋅ M N ⋅ ( 1 − M N ) E(X)= n \cdot \frac{M}{N} \hspace{1cm} V(X)=(\frac{N-n}{N-1}) \cdot n \cdot \frac{M}{N}\cdot (1-\frac{M}{N}) E(X)=nNMV(X)=(N1Nn)nNM(1NM)

The means of the binomial and hypergeometric rv’s are equal, whereas the variances of the two rv’s differ by the factor ( N − n ) ( N − 1 ) \frac{(N-n)}{(N-1)} (N1)(Nn), often called the finite population correction factor(有限总体校正因子). This factor is less than 1, so the hypergeometric variable has smaller variance than does the binomial rv. The correction factor can be written ( 1 − n N ) ( 1 − 1 N ) \frac{(1-\frac{n}{N})}{(1-\frac{1}{N})} (1N1)(1Nn), which is approximately 1 when n is small relative to N.

The Negative Binomial Distribution

The negative binomial rv and distribution are based on an experiment satisfying the following conditions:

  • The experiment consists of a sequence of independent trials.
  • Each trial can result in either a success (S) or a failure (F).
  • The probability of success is constant from trial to trial, so for i = 1,2,3,…
  • The experiment continues (trials are performed) until a total of r successes have been observed, where r is a specified positive integer.

The random variable of interest is X = the number of failures that precede the rth success; X is called a negative binomial random variable because, in contrast to the binomial rv, the number of successes is fixed and the number of trials is random.

PROPOSITION:

The pmf of the negative binomial rv X with parameters r=number of S’s and p=P(S) is

n b ( x ; r , p ) = ( x + r − 1 r − 1 ) p r ( 1 − p ) x x = 0 , 1 , 2 , . . . nb(x;r,p)=\dbinom{x+r-1}{r-1}p^r(1-p)^x \hspace{1mm} x=0,1,2,... nb(x;r,p)=(r1x+r1)pr(1p)xx=0,1,2,...

In some sources, the negative binomial rv is taken to be the number of trials X+r rather than the number of failures.

In the special case r=1, the pmf is

n b ( x ; 1 , p ) = ( 1 − p ) x p x = 0 , 1 , 2 , . . . nb(x;1,p)=(1-p)^xp \hspace{1cm}x=0,1,2,... nb(x;1,p)=(1p)xpx=0,1,2,...

Both X=number of F’s and Y=number of trials (=1+X) are referred to in the literature as geometric random variables(几何随机变量), and the pmf above is called the geometric distribution(几何分布).

PROPOSITION:

If X is a negative binomial rv with pmf nb(x; r, p), then

E ( X ) = r ( 1 − p ) p V ( X ) = r ( 1 − p ) p 2 E(X)=\frac{r(1-p)}{p} \hspace{1cm} V(X)=\frac{r(1-p)}{p^2} E(X)=pr(1p)V(X)=p2r(1p)

3.6 The poisson Probability Distribution(泊松分布)

DEFINITION:

A discrete random variable X is said to have a Poisson distribution with parameter μ ( μ > 0 ) \mu(\mu > 0) μ(μ>0) if the pmf of X is

p ( x ; μ ) = e − μ ⋅ μ x x ! x = 0 , 1 , 2 , 3 , . . . p(x;\mu)=\frac{e^{-\mu} \cdot \mu^{x}}{x!} \hspace{1cm} x=0,1,2,3,... p(x;μ)=x!eμμxx=0,1,2,3,...

μ \mu μ is in fact the expected value of X. The letter e in the pmf represents the base of the natural logarithm system; its numerical value is approximately 2.71828. In contrast to the binomial and hypergeometric distributions, the Poisson distribution spreads probability over all non-negative integers, an infinite number of possibilities.

e μ = 1 + μ + μ 2 2 ! + μ 3 3 ! + . . . = ∑ x = 0 ∞ μ x x ! e^{\mu}=1+\mu+\frac{\mu^2}{2!}+\frac{\mu^3}{3!}+...=\sum_{x=0}^{\infin} \frac{\mu^x}{x!} eμ=1+μ+2!μ2+3!μ3+...=x=0x!μx

If the two extreme terms are multiplied by and then this quantity is moved inside the summation on the far right, the result is

1 = ∑ x = 0 ∞ e − μ ⋅ μ x x ! 1=\sum_{x=0}^{\infin} \frac{e^{-\mu} \cdot \mu^x}{x!} 1=x=0x!eμμx

The Poisson Distribution as a Limit

PROPOSITION:

Suppose that in the binomial pmf b(x; n, p), we let n → ∞ n \to \infin n and p → 0 p \to 0 p0 in such a way that np approaches a value μ > 0 \mu > 0 μ>0 . Then b(x; n, p) → \to p(x; μ \mu μ).

According to this proposition, in any binomial experiment in which n is large and p is small, b ( x ; n , p ) ≈ p ( x ; μ ) b(x;n,p) \approx p(x;\mu) b(x;n,p)p(x;μ) , where μ = n p \mu = np μ=np. As a rule of thumb, this approximation can safely be applied if n>50 and np<5.

The Mean and Variance of X

Since b ( x ; n , p ) → p ( x ; μ ) b(x;n,p) \to p(x;\mu) b(x;n,p)p(x;μ) as n → ∞ n \to \infin n , p → 0 p \to 0 p0 , n p → μ np \to \mu npμ, the mean and variance of a
binomial variable should approach those of a Poisson variable. These limits are
n p → μ np \to \mu npμ and n p ( 1 − p ) → μ np(1-p) \to \mu np(1p)μ.

PROPOSITION:

If X has a Poisson distribution with parameter μ \mu μ, then E ( X ) = V ( X ) = μ E(X) = V(X) = \mu E(X)=V(X)=μ.

The Poisson Process

Assumption:

  1. There exists a parameter α > 0 \alpha >0 α>0 such that for any short time interval of length Δ \Delta Δt, the probability that exactly one event occurs is α ⋅ Δ t + o ( Δ t ) ∗ \alpha \cdot \Delta t+o(\Delta t)^* αΔt+o(Δt).
  2. The probability of more than one event occurring during Δ t \Delta t Δt is o ( Δ t ) o(\Delta t) o(Δt) [which, along with Assumption 1, implies that the probability of no events during Δ t \Delta t Δt is 1 − α ⋅ Δ t − o ( Δ t ) 1-\alpha \cdot \Delta t - o(\Delta t) 1αΔto(Δt).
  3. The number of events occurring during the time interval Δ t \Delta t Δt is independent of the number that occur prior to this time interval.

Informally, Assumption 1 says that for a short interval of time, the probability of a single event occurring is approximately proportional to the length of the time interval, where a is the constant of proportionality. Now let P k ( t ) P_k(t) Pk(t) denote the probability that k events will be observed during any particular time interval of length t.

PROPOSITION:

P k ( t ) = e − α t ⋅ ( α t ) k / k ! P_k(t)=e{-\alpha t} \cdot (\alpha t)^k / k! Pk(t)=eαt(αt)k/k! ,so that the number of events during a time interval of length t is a Poisson rv with parameter μ = α t \mu=\alpha t μ=αt. The expected number of events during any such time interval is then α t \alpha t αt, so the expected number during a unit interval of time is α \alpha α.

The occurrence of events over time as described is called a Poisson process; the parameter α \alpha α specifies the rate for the process.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lum0s!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值