一、统计学相关
1. crosstable
# 计数
ct = pd.crosstab(label, feature, margins=True)
# 比例
ct_prob = contingency_table.div(ct['All'], axis=0)
2. 卡方检验
# p-value
scipy.stats.chi2_contingency(cross_table)[1]
# chi^2
scipy.stats.chi2_contingency(cross_table)[0]
3. SelectKBest
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
skb = SelectKBest(chi2, k=2)
skb = skb.fit(cols, feat)
skb.get_support()
4. ANOVA
model = ols('value ~ C(treatments)', data=an_df).fit()
anova_table = anova_lm(model, typ = 2)
anova_table
二、数据预处理
1. LabelEncoder
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
for col in data.columns:
if data[col].dtype == 'object':
data[col] = le.fit_transform(data[col])
需要注意LabelEncoder的结果带有数字意义(2大于1,3大于2),对于离散型特征不建议使用这种方法。
2. OneHot Encoder
from sklearn.preprocessing import OneHotEncoder
onehot_encoder = OneHotEncoder()
onehot_encoded = onehot_encoder.fit_transform(all_Feats)
3. getdummies( )
import pandas
encoded = pd.get_dummies(X) # 对整个dataframe
oh = pd.get_dummies(X[col], prefix=col) # 对单列
二、XGBoost
import xgboost
from xgboost import XGBClassifier
from sklearn import metrics
import matplotlib.pyplot as plt
from xgboost import plot_importance
train_X, test_X, train_y, test_y = train_test_split(encoded_x, y, test_size=0.2)
xgbc = XGBClassifier(eta = 0.2, max_depth = 6)
xgbc.fit(train_X, train_y) #, eval_metric = 'logloss', eval_set = evalset)
test_predict = xgbc.predict(test_X)
metrics.accuracy_score(test_y, test_predict)
ax = plot_importance(xgbc)
ax.figure.set_size_inches(8,36)
plt.show()
三、LightGBM
import lightgbm as lgb
import matplotlib.pyplot as plt
from xgboost import plot_importance
from sklearn import metrics
train_data = lgb.Dataset(train_X, label = train_y)
validation_data = lgb.Dataset(test_X, label = test_y)
params={
'learning_rate':0.1,
'lambda_l1':0.1,
'lambda_l2':0.2,
'max_depth':6,
'objective':'multiclass',
'num_class':8,
}
clf = lgb.train(params, train_data, valid_sets=[validation_data])
y_prob = clf.predict(test_X, num_iteration=clf.best_iteration)
y_pred = [list(x).index(max(x)) for x in y_prob]
metrics.accuracy_score(test_y, y_pred)
columns = test_X.columns.tolist()
df = pd.DataFrame()
df['feature name'] = columns
df['importance'] = clf.feature_importance()
df = df.sort_values('importance')
df.plot.barh(x = 'feature name',figsize=(10,36))
四、SHAP沙普利值
先安装SHAP:
!pip install shap
以xgboost模型为例:
import shap
explainer = shap.TreeExplainer(xgbc)
shap_values = explainer.shap_values(test_X)
shap.summary_plot(shap_values, test_X, plot_type="bar")