AVL树大总结

目录

AVL树的概念

AVL树节点的定义

AVL树的插入

AVL树的旋转

AVL树的验证

AVL树的性能


AVL树的概念

当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
(1)它的左右子树都是AVL树
(2)左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

AVL树节点的定义

template<class K, class V>
struct AVLTreeNode
{
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;//左孩子
	AVLTreeNode<K, V>* _right;//右孩子
	AVLTreeNode<K, V>* _parent;//父节点

	// 右子树-左子树的高度差
	int _bf;

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};

其中数据用pair(键值对来存储),详情可看下链接pair


AVL树的插入

AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子
 

bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_bf = 0;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		cur->_parent = parent;

		//更新平衡因子
		while (parent)
		{
			if (cur == parent->_right)
			{
				parent->_bf++;
			}
			else
			{
				parent->_bf--;
			}

			//继续更新
			if (parent->_bf == 0)  
			{
				break;
			}
			else if (parent->_bf == -1 || parent->_bf == 1)
			{
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == -2 || parent->_bf == 2)
			{
				if (parent->_bf == 2 && cur->_bf == 1)// 左单旋
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1) // 右单旋
				{
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1) // 左右双旋
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1) // 右左双旋
				{
					RotateRL(parent);
				}
				 
				break;
			}
			else
			{
				assert(false);
			}

		}
	}

在更新平衡因子前的操作和二叉搜索树一样,只不过插入后要额外建立子节点和父节点的关系.

新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
cur插入后,parent的平衡因子一定需要调整,在插入之前,parent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1. 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可
2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可
此时:parent的平衡因子可能有三种情况:0,+-1, +-2
1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
成0,此时满足AVL树的性质,插入成功,不需要再向上调整
2. 如果parent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
新成正负1,此时以parent为根的树的高度增加,需要继续向上更新(因为影响到了上面的节点)
3. 如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进
行旋转处理.


AVL树的旋转

由上面的代码知道旋转分为四种情况

1.左单旋

这里abc分别代表高度均为h的子树的抽象图,那么当在c插入(左右无所谓),都会引起7的平衡因子+1,接着5的平衡因子+1变成了2(原本右边就比左边高1),需要进行旋转。在旋转时我们需要平衡高度,使用下面的方法:

把7的左也就是b给5的右,再把5给成7的左,变成如图:

 这样一来,我们发现7和5的平衡因子就都变成了0,使得树平衡

代码:

void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		subR->_left = parent;
		Node* ppNode = parent->_parent;//父亲的父亲

        parent->_parent=subR;
		if (parent == _root)//如果需要旋转的父亲是根节点
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (ppNode->_right == parent)
			{
				ppNode->_right = subR;
			}
			else
			{
				ppNode->_left = subR;
			}
			subR->_parent = ppNode;
		}
		parent->_bf = subR->_bf = 0;
	}

2.右单旋

把3的右也就是c给5的左,再把5给3的右

代码:

void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		Node* ppNode = parent->_parent;

        parent->_parent=subL;
		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppNode->_right == parent)
			{
				ppNode->_right = subL;
			}
			else
			{
				ppNode->_left = subL;
			}
			subL->_parent = ppNode;
		}
		parent->_bf = subL->_bf = 0;
	}

3.左右双旋

可以看到在这种情况中出现了“折线”,而前两种情况都是“直线”,这种情况只进行一次旋转是不行的,我们首先对30进行左旋,再对90进行右旋即可完成目标,但是注意,我们新插入的节点可能在b,也可能在c呀,所以如果在c的话,那么90最后的平衡因子就是0,30的平衡因子就是-1。因此我们在插入后先记录60也就是parent(90)的左边的右边的平衡因子,看是插入在了b还是c,最后再统一调整平衡因子,代码如下
PS:也有可能60一开始就没有左右孩子,60是新插入的节点,那么最后30/90/60的平衡因子都是0

void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		// 更新平衡因子
		if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 1;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			// subLR->_bf旋转前就有问题
			assert(false);
		}
	}

4.右左双旋

同理,不再赘述,代码如下:

void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 0)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 0;
		}
		else if (bf == 1)
		{
			subRL->_bf = 0;
			parent->_bf = -1;
			subR->_bf = 0;
		}
		else if (bf == -1)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 1;
		}
		else
		{
			// subLR->_bf旋转前就有问题
			assert(false);
		}
	}

   

AVL树的验证

这里我们采用递归算法,只需要验证左右子树的高度差不过1即可

求高度:

int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int lh = _Height(root->_left);
		int rh = _Height(root->_right);

		return lh > rh ? lh + 1 : rh + 1;
	}

验证:

bool _IsBalanceTree(Node* root)
	{
		// 空树也是AVL树
		if (nullptr == root)
			return true;

		// root左右子树的高度差
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		int diff = rightHeight - leftHeight;

		if (abs(diff) >= 2)
		{
			cout << root->_kv.first << "节点平衡因子异常" << endl;
			return false;
		}

		if (diff != root->_bf)
		{
			cout << root->_kv.first << "节点平衡因子不符合实际" << endl;
			return false;
		}

		return _IsBalanceTree(root->_left)
			&& _IsBalanceTree(root->_right);
	}

AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这
样可以保证查询时高效的时间复杂度,即log_2 (N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,在删除时,更有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但如果结构需要经常修改,就不太适合。

至于AVL树的旋转这里不做赘述,需要的可以查阅算法导论。


  • 6
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

printf("雷猴");

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值