【Windows】Wan 2.1 视频生成模型本地部署

Wan 2.1 视频生成模型本地部署(文字转视频)

Wan 2.1(通义万相2.1)是阿里巴巴于2025年2月推出的开源视频生成大模型,专注于从文本或图像生成高质量视频内容。

主要特点:

  • 模型规模: 提供1.3B和14B两个参数规模的模型,适用于不同需求。

  • 高效性能: 1.3B模型仅需8.19 GB显存,可在消费级GPU上运行。例如,在RTX 4090上,约4分钟即可生成5秒的480P视频。

  • 多任务支持: 支持文本生成视频、图像生成视频、视频编辑、文本生成图像和视频生成音频等多种任务。

  • 开源协议: 采用Apache 2.0协议,全球开发者可在GitHub、HuggingFace等平台下载并体验。

     注:在权威评测集VBench中,万相2.1以总分86.22%的成绩位居榜首,领先于其他视频生成模型。

1、下载 ComfyUI 一键安装包 :支持 Windows 和 mac 系统

打开网站:ComfyUI | Generate video, images, audio with AI The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.https://www.comfy.org/

        

点击 download,进入下载页面:

        

本人电脑 是windows 系统,选择Windows安装包:

点击后,windows开始下载:

        

点击下载后的文件进行安装:

        

进入该页面后,点击开始:

        

        

        点击 下一步 按钮“显示的是 下一个”,进入安装位置选择页面:

                初始页面如下:

                        

                个人不喜欢程序安装在C盘,所以我选择在D盘:

                        

                编辑的存储路径如下:

                        

                        注释:

                                该路径存储 运行日志和服务器配置

                                        

                                该路径存储代码和资源:

                                          

                由于本次是全新安装,所以 直接下一步:

                       

               个人习惯关闭自动更新和信息反馈,这点基于个人习惯来定:

                         

                         取消后,点击安装button

                         

                        进入安装页面:

                        

                        接下来会进入比较漫长的安装过程:

                        

                        安装完成后系统会自动打开:(并显示缺少模型),点击下载模型

                        

                        点击下载后,关闭页面

                        

                        进入系统页面

                        

2、下载文本编码器和 VAE(Variational Autoencoder,变分自编码器)是一种深度学习模型,主要用于生成建模

        2.1 下载文本编码器模型文件

        打开URL:https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/text_encodershttps://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/text_encoders

        如果 URL无法访问,则访问 hf-mirror.com ,https://hf-mirror.com/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/text_encodershttps://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/text_encoders

        打开页面如下:

                

        对于模型版本的选择:(本人选择fp8)

                

       等待下载完成:

                 

       进入到自己的安装 ComfyUI时,设定的目录:

                 

        把下载的模型放入 models/text_encodes/ 这个文件目录下:

                

        2.2 下载VAE模型文件

               打开URL:https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensorshttps://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensors

                如果 URL无法访问,则访问 hf-mirror.com ,split_files/vae/wan_2.1_vae.safetensors · Comfy-Org/Wan_2.1_ComfyUI_repackaged at mainWe’re on a journey to advance and democratize artificial intelligence through open source and open science.https://hf-mirror.com/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensors

                打开页面如下:

        ​​​​​​​        

                点击download 按钮:

                       ​ 

                浏览器开始下载:

                        

                下载完成后,将下载好的模型,放入文件路径:D:\software\ComfyUI\models\vae 下面:

                        

        3、 下载视频生成模型:

                打开URL:https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_modelshttps://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_models

                如果 URL无法访问,则访问 hf-mirror.com ,
https://hf-mirror.com /Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_modelshttps://hf-mirror.com /Comfy-Org/Wan_2.1_ComfyUI_repackaged/tree/main/split_files/diffusion_models

                打开页面如下:

                        

                说明:生成视频的质量等级 :fp16 > bf16 > fp8_scaled > fp8_e4m3fn

                        个人倾向与使用 fp16 版本而不是 bf16 版本,fp16版本会产生更好的结果。当然也要参考硬件环境,如果硬件资源不足则可以选择fp8版本

                        如果显卡是8G以内的,建议选择:1.3B_fp16 版本:(其他的占用比较大,个人也是选择此模型)

                点击下载(下载小图标),浏览器开始下载文件:

                

              下载完成后,将文件拷贝至 /models/diffusion_models/ 目录下:

                     

         4、下载文件转视频的工作流定义文件:  

               访问url:https://comfyanonymous.github.io/ComfyUI_examples/wan/text_to_video_wan.jsonhttps://comfyanonymous.github.io/ComfyUI_examples/wan/text_to_video_wan.json                        

                点击鼠标“右键”,选择另存为:

                        

                暂时存放在桌面:

                        

               桌面文件:

                        

                        个人在整理习惯上,喜欢创建一个常用文件的文件夹,将常用的文件放入:

                        

        5、关闭ComfyUI客户端,重新打开,执行测试:    

                    启动中,模型加载: 

                              

                    进入初始页面:

                                            将工作流文件拖拽到页面中:

                         

                拖拽后效果:

                        

                点击 CLIP,选择刚刚下载的fp8

                        

               点击 设置 按钮:打开系统设置,将 CUDA--》CUDA malloc 设置为 disable【本人的TeslaP100 需要这样设置才可以运行】

                        

                                显存:12G

                                性能:GPU 运算 100%

                 执行步骤展示:

                        

                 点击 执行 进行测试:(用默认提示词),生成视频 预览:

                        ​​​​​​​

<think>好的,我现在需要帮助用户了解如何在本地部署WAN2.1到ComfyUI。首先,我要确认用户提到的“wan2.1”具体是什么。根据常见的AI模型,可能是指Waifu Diffusion的某个版本,或者是其他类似Stable Diffusion的模型。不过,用户可能拼写有误,比如可能是“waifu2.1”或者其他名称。但根据常见的模型WAN2.1可能是指一个特定的动漫风格生成模型,类似于Waifu Diffusion的变体。 接下来,我需要考虑ComfyUI的部署流程。ComfyUI是一个基于节点式工作流的Stable Diffusion界面,通常部署本地模型需要以下步骤:安装Python、Git,克隆ComfyUI仓库,安装依赖,放置模型文件到指定目录,然后运行。 用户的问题可能涉及如何将WAN2.1模型正确放置在ComfyUI的模型目录中,并确保配置正确。可能的步骤包括下载模型文件(通常为.ckpt或.safetensors格式),将其放入ComfyUI的models/checkpoints目录,然后通过ComfyUI的界面加载。 但需要确认WAN2.1是否与ComfyUI兼容,是否需要特定的节点或工作流配置。比如,某些模型可能需要特定的VAE或设置参数。此外,用户可能还需要安装必要的依赖项,比如Torch版本是否正确,是否需要其他扩展插件。 可能的疑问点包括:用户是否已经安装了ComfyUI?他们的系统环境是否符合要求?模型文件是否已经正确下载?是否需要调整ComfyUI的设置?如果遇到错误,如何排查? 在回答时,应该分步骤说明,确保清晰。同时,提醒用户注意模型文件的来源和安全性,建议从官方或可信渠道下载。另外,可能需要指导用户如何启动ComfyUI,访问本地服务器,并选择正确的模型进行测试。 总结步骤可能为:安装依赖→克隆ComfyUI→放置模型文件→启动→配置工作流。需要确保每个步骤的准确性,并预见到用户可能的常见问题,如路径错误、依赖缺失等,提供相应的解决方法。</think>以下是WAN2.1模型在ComfyUI本地部署的完整步骤(建议使用NVIDIA显卡且显存≥8GB): 1. **环境准备** - 安装Python 3.10.x - 安装CUDA 11.8(与PyTorch 2.0+兼容) - 安装Git 2. **部署ComfyUI** ```bash git clone https://github.com/comfyanonymous/ComfyUI cd ComfyUI pip install -r requirements.txt ``` 3. **模型部署** - 下载WAN2.1模型文件(通常为`.safetensors`格式) - 将模型文件放入: ``` ComfyUI/models/checkpoints/ ``` - 如果包含专用VAE,放入: ``` ComfyUI/models/vae/ ``` 4. **启动配置** - 新建启动脚本`run_gpu.bat`: ```bat @echo off set PYTHON= set USE_CPU= set CUDA_VISIBLE_DEVICES=0 call python main.py --listen --port 8188 ``` 5. **运行与验证** - 双击运行`run_gpu.bat` - 浏览器访问`http://127.0.0.1:8188` - 在工作流中右键选择"Load default workflow" - 在Checkpoint加载器中选择WAN2.1模型 **常见问题处理:** 1. 显存不足:尝试启用`--lowvram`参数 2. 依赖冲突:使用虚拟环境 ```bash python -m venv venv venv\Scripts\activate pip install -r requirements.txt ``` 3. 模型未识别:检查文件扩展名是否为`.ckpt`或`.safetensors` **进阶配置:** - 如需混合使用其他模型(如ControlNet),将扩展模型放入: ``` ComfyUI/models/controlnet/ ``` - 推荐工作流配置参数: ```json { "positive_prompt": "best quality, masterpiece, (wan2.1 style:1.3)", "negative_prompt": "lowres, bad anatomy", "sampler": "dpmpp_2m", "steps": 25, "cfg_scale": 7 } ``` 建议从HuggingFace等官方渠道获取WAN2.1模型文件,部署完成后可通过API调用: ```python import requests payload = {"prompt": {"3":{"inputs":{"text":"1girl, cityscape"}}}} requests.post("http://127.0.0.1:8188/prompt", json=payload) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangchen0112

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值