【论文阅读】PointMLP:RETHINKING NETWORK DESIGN AND LOCAL GEOMETRY IN POINT CLOUD

PointMLP是ICLR 2022上提出的一种新方法,它采用纯MLP网络和残差连接,解决了几何特征提取模块的计算量大和性能饱和问题。在ModelNet40上取得94.5%的精度,并在ScanObjectNN上超越最佳模型3.3%。文章探讨了模型设计、实验结果,以及对几何仿射变换的使用,表明其在点云处理中的优势。
摘要由CSDN通过智能技术生成

PointMLP ICLR 2022

论文:https://arxiv.org/abs/2202.07123

代码:https://github.com/ma-xu/pointMLP-pytorch

在家看不下去论文,记录一下

1.概述

解决的问题:几何特征提取模块会造成较大的计算量以及性能饱和(信息丢失)

提出的方法:PointMLP,有残差连接的纯MLP网络。以及一种轻量的仿射变换

效果:在ModelNet40上达到sota,94.5%;在ScanObjectNN数据集上比最好的模型高出了3.3%,并且速度更快

存在的问题:

2.模型

 一个stage,就是残差连接的MLP blocks。几何仿射变换类似球状归一化?A表示邻域聚合,类似maxpooling&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值