主成分分析与因子分析的区别

主成分分析PCA与因子分析FA是两种常用的降维方法。PCA通过原始指标线性表示,选择特征值大于1或累计方差贡献率大于85%的主成分;FA则寻找公共因子来表示原指标,因子个数需指定。两者新指标皆不相关,使用前需数据标准化,FA还需通过KMO和bartlett检验。在SPSS中,可通过因子分析获取类似PCA的结果。进行PCA后,应解释主成分含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 表示形式不同

        主成分分析PCA是用原始的指标X1~Xn进行线性表示,得到n个新的主成分F1~Fn,主成分个数与原指标相同。然后选取n个主成分中特征值大于1的,或累计方差贡献率大于85%的,作为降维后的新指标。

        因子分析FA则相反,寻找原指标的公共因子F1~Fm,然后用因子线性表示原指标X1~Xn。这里两者个数往往不相同,因子个数需要自行指定

        无论是PCA还是FA,得到的新指标都是两两不相关的,这也是许多其他模型的前提条件。

2. 使用条件不同

        首先使用两种方法前往往都需要对数据进行标准化

        其次,因子分析还需要经过KMO检验和bartlett球形检验

3. SPSS中的使用

        SPSS中只有因子分析,没有主成分分析。但事实上可以由因子分析的结果推出主成分分析的结果。

        数学上可以证明,将FA得到的因子载荷矩阵中的向量 a(i) 除以√λi,即u(i) = a(i) / √λi

, 就是PCA中的系数。(推导可见老哥视频,主成分分析那里)

4. tips

        在使用主成分分析法得到主成分后,最好对各个主成分进行一定的分析,解释该主成分代表的含义。

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值