并查集(c/c++)

1.算法思想

(注意:本文章仅为个人笔记使用,仅保证程序能达到算法需要的效果,而不能担保程序的规范与简洁,请各位斟酌看待)

算法介绍

并查集是一种树型(数组形式表达)的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。

2.所需知识

【1】树的基础理解

【2】熟练掌握数组思想及运用

3.算法组成

【1】算法结构

(1)parent[n] 数组:通常把所有的节点写入一维数组,并初始化为-1

        这么做相当于把每一个节点看作一颗仅有一个根节点的树

(2)rank[n] 数组:用于记录每一个集合(不同的树)的高度(根节点高度设为0)

初始化为0

【2】算法组成

(1)查找函数 int findRoot( int x , int parent[ ] )

        查找某一个节点的根节点

//寻找根节点
int findRoot(int x,int parent[]) 
{
	int x_root=x;
	while(parent[x_root]!=-1){
		x_root=parent[x_root];
	}
	return x_root;
}

        若想判断两个节点是否属于同一颗树,直接调用该函数,查看根节点是否相同即可

(2)合并函数 int unionTree(int x , int y , int parent[ ] , int rank[ ] )

        当两个点所处的集合相同时,返回0,表示不用合并

        当两个点所处的集合不同时,把树的高度小的集合并到高度大的集合下面(若rank即树的度 

        太高,会使查找根节点的时间变长,因此需要尽可能减小树的高度)

int unionTree(int x,int y,int parent[],int rank[])
{
    int x_root = findRoot( x ,parent )  , y_root = findRoot( y , parent );
    if( x_root == y_root ){
        return 0;
    }else if( rank[x_root] > rank[y_root] ){
        parent[y_root]=x_root;
    }else if( rank[x_root] < rank[y_root] ){
        parent[x_root]=y_root;
    }else if( rank[x_root] == rank[y_root] ){//当两颗树高度相同时,随便一颗并入另一颗下面
        parent[x_root]=y_root;               //并使并入后的新树高度+1
        rank[y_root]++;
    }
    return 1;
}

(3)统计有多少个不同的集合

        直接遍历parent【n】数组,统计有多少个负数即可(-1代表根节点)

【3】全部代码

   

#include <iostream>
using namespace std;

//寻找根节点
int findRoot(int x,int parent[]) 
{
	int x_root=x;
	while(parent[x_root]!=-1){
		x_root=parent[x_root];
	}
	return x_root;
}

//合并不同的集合??
int unionTree(int x,int y,int parent[],int rank[])
{
    int x_root = findRoot( x ,parent )  , y_root = findRoot( y , parent );
    if( x_root == y_root ){
        return 0;
    }else if( rank[x_root] > rank[y_root] ){
        parent[y_root]=x_root;
    }else if( rank[x_root] < rank[y_root] ){
        parent[x_root]=y_root;
    }else if( rank[x_root] == rank[y_root] ){//当两颗树高度相同时,随便一颗并入另一颗下面
        parent[x_root]=y_root;               //并使并入后的新树高度+1
        rank[y_root]++;
    }
    return 1;
}

//统计集合的个数
int size(int parent[],int n)//n代表节点的个数
{
    int cnt=0,i=0;
    for(i=0;i<n;i++)
    {
        if(parent[i]<0)
            cnt++;
    }
    return cnt;
}

int main()
{
    //初始化数据
    int n=9,i=0;
    int parent[n],rank[n]={0};
    for(i=0;i<n;i++)
        parent[i]=-1;

    //把最下面的测试数据输入
    unionTree( 0 , 1 , parent , rank );
    unionTree( 1 , 2 , parent , rank );
    unionTree( 2 , 3 , parent , rank );
    unionTree( 4 , 5 , parent , rank );
    unionTree( 6 , 7 , parent , rank );
    unionTree( 7 , 8 , parent , rank );
    cout<<"共有 "<<size(parent,n)<<" 个集合\n";
    cout<<"节点2和节点3属于同一个集合吗?\n";
    if( findRoot( 2 , parent ) == findRoot( 3 , parent ) ){
        cout<<"是\n";
    }else{
        cout<<"不是\n";
    }
}
/*
测试数据,共3个集合{0,1,2,3},{4,5},{6,7,8}
*/

4.算法应用

图是否存在环?

介绍:判断一个图是否有环

代码附上:

//并查集(判断图存在环)
#include<iostream>
using namespace std;

/*
变量说明:
parent代表当前坐标的父节点,rank代表树的高度(从0开始) 
*/

//寻找根节点
int findRoot(int x,int parent[]) 
{
	int x_root=x;
	while(parent[x_root]!=-1){
		x_root=parent[x_root];
	}
	return x_root;
}

//合并两棵树,不成环返回1,成环返回0 
int unionTree(int x,int y,int parent[],int rank[])
{
	int x_root=findRoot(x,parent);
	int y_root=findRoot(y,parent);
	
	//当两个根节点相等时,说明两个节点实际上属于同一棵树,而树的节点之间有路径
	//显然已经形成了一个环,直接退出,并返回0 
	if(x_root==y_root)
		return 0;
		
	if(rank[x_root]>rank[y_root]){
		parent[y_root]=x_root;
	}else if(rank[x_root]<rank[y_root]){
		parent[x_root]=y_root;
	}else{
		parent[x_root]=y_root;
		rank[y_root]++;
	}
	return 1;
} 

/*
测试数据

数据1:6个节点,6条边,环状
6 6
0 1
1 2
2 4
1 3
3 5 
4 5

数据2:6个节点,5条边,不成环
6 5
0 1
1 2
2 4
1 3
3 5 
*/ 

int main()
{
	int n,arc;
	cout<<"请输入节点数目和边的数目:";
	cin>>n>>arc;
	int rank[n]={0},parent[n];
	for(int i=0;i<n;i++)//父节点初始化为-1 
		parent[i]=-1;
	
	cout<<"请输入顶点之间的关系:";
	int vi,vj,graph[n][2];
	for(int i=0;i<arc;i++)
	{
		cin>>vi>>vj;
		graph[i][0]=vi;
		graph[i][1]=vj;
	}
	
	int flag=0;//flag用于辅助标记环的存在,便于输出结果 
	for(int i=0;i<arc;i++)
	{
		int x=graph[i][0];
		int y=graph[i][1];
		if(unionTree(x,y,parent,rank)==0){
			flag=1;
			break;
		}	
	}	
	if(!flag)
		cout<<"没有环!\n";
	else 
		cout<<"有环存在!\n";
} 

如果有不对的地方希望大家能够在评论区指出,希望能和大家一起进步!!!

如果喜欢的话可以分享给小伙伴~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值