LeetCode 239 滑动窗口最大值

本文介绍了如何使用双端队列deque解决LeetCode题目239滑动窗口中的最大值问题,通过维护单调递减的队列,以O(n)时间复杂度求解,空间复杂度为O(k)。
摘要由CSDN通过智能技术生成

LeetCode 239 滑动窗口最大值

问题描述

给定一个整数数组 nums 和一个整数 k,定义一个大小为 k 的滑动窗口,该窗口从数组的最左侧移动到最右侧。你可以看到在滑动窗口内的 k 个数字,并返回滑动窗口中的最大值。

解题思路

我们可以利用一个双端队列 deque 来解决这个问题。在滑动窗口的过程中,我们需要做以下几件事情:

  1. 维护一个双端队列 deque,用来存储数组元素的索引。
  2. 当新的元素进入滑动窗口时,我们需要从队列的尾部开始比较,将小于等于当前元素值的索引全部弹出,确保队列中的元素是按照递减顺序排列的。
  3. 将当前元素的索引入队。
  4. 判断队列中的头部元素(即最大值的索引)是否已经超出滑动窗口的范围,若超出范围则将其弹出。
  5. 滑动窗口移动到达有效位置后,将队列头部元素对应的数组值添加到结果中。

代码实现

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        deque<int> dq = {};
        vector<int> result = {};
        for (int i = 0; i < nums.size(); i++) {
            // 插入数值
            while (!dq.empty() && nums[dq.back()] <= nums[i]) {
                dq.pop_back();
            }
            dq.push_back(i);    // 入队
            // 滑动窗口右移
            if (i - dq.front() >= k) {    // 队首已经离开窗口了
                dq.pop_front();
            }
            // 记录答案
            if (i >= k - 1) {
                // 由于队首到队尾单调递减,所以窗口最大值就是队首
                result.push_back(nums[dq.front()]);
            }
        }
        return result;
    }
};

算法复杂度分析

  • 时间复杂度:该算法只需一次遍历数组,时间复杂度为 O ( n ) O(n) O(n),其中 n n n 是数组的长度。
  • 空间复杂度:双端队列的最大空间为 O ( k ) O(k) O(k),用于存储滑动窗口的索引值。

总结

本文介绍了一种使用双端队列来解决滑动窗口最大值的问题的方法。通过维护一个单调递减的双端队列,可以在 O ( n ) O(n) O(n) 的时间复杂度内解决该问题,其中 n n n 是数组的长度。这种方法在面对滑动窗口问题时具有较高的效率和可读性,是一种常见的解题思路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宁子希

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值