K-means算法

本文详细介绍了K-means聚类算法,包括其原理(最小化簇内误差平方和),步骤(初始化、分配、更新),优点和缺点,以及变体如K-means++和Mini-BatchK-means。算法的数学表达和实现中的关键因素也被提及。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-means是一种广泛使用的聚类算法,它旨在将数据分为K个不同的簇,以便将具有相似特征的数据点归为同一组。K-means算法的核心思想是通过迭代寻找簇中心(或称为质心),以最小化每个点到其最近的质心的距离平方和。

原理

K-means算法基于最小化簇内误差平方和(Within-Cluster Sum of Squares, WCSS),也就是每个点到其簇中心的欧几里得距离的平方和。目标是找到这样的簇中心,以使得总的WCSS最小。

步骤

K-means算法通常遵循以下步骤:

  1. 初始化:随机选择K个数据点作为初始簇中心。也有其他的初始化方法,如K-means++,它以一种更精心设计的方式选择初始点,以改进聚类结果的质量和算法的收敛速度。
  2. 分配:将每个数据点分配给最近的簇中心。这里,“最近”通常是指在欧几里得距离意义上的最近。
  3. 更新:对于每个簇,计算所有分配给该簇的点的均值,并将该均值作为新的簇中心。
  4. 重复:重复步骤2和3,直到满足某个停止准则。常见的停止准则包括簇中心的变化小于某个阈值、达到预定的迭代次数,或WCSS的改变量小于某个阈值。

算法特点

  • 优点:简单、直观、易于实现,对于大量数据集也相对高效。
  • 缺点:需要预先指定K值,但在实际应用中K的最佳值通常未知,可能需要使用诸如肘部法则(Elbow Method)等技术来估计。K-means对初始簇中心的选择敏感,可能导致局部最优解。此外,K-means假设簇是凸形和同质的,这对于某些应用来说可能是个限制。
  • 变体:有多种K-means的变体,如K-means++(改进的初始化方法)、Mini-Batch K-means(适用于大规模数据集的高效版本)等。

数学表达

给定数据集 D = { x 1 , x 2 , . . . , x n } D = \{x_1, x_2, ..., x_n\} D={x1,x2,...,xn},其中每个 x i x_i xi是一个特征向量。K-means试图找到一组K个簇中心 C = { c 1 , c 2 , . . . , c K } C = \{c_1, c_2, ..., c_K\} C={c1,c2,...,cK},以最小化WCSS目标函数:
J ( C ) = ∑ i = 1 n min ⁡ c j ∈ C ∥ x i − c j ∥ 2 J(C) = \sum_{i=1}^{n} \min_{c_j \in C} \|x_i - c_j\|^2 J(C)=i=1ncjCminxicj2
这是一个NP难问题,但K-means通过迭代优化提供了一个有效的启发式解。

实现

在实现时,K-means算法的效率和质量很大程度上依赖于初始化方法和距离计算的效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值