K-means是一种广泛使用的聚类算法,它旨在将数据分为K个不同的簇,以便将具有相似特征的数据点归为同一组。K-means算法的核心思想是通过迭代寻找簇中心(或称为质心),以最小化每个点到其最近的质心的距离平方和。
原理
K-means算法基于最小化簇内误差平方和(Within-Cluster Sum of Squares, WCSS),也就是每个点到其簇中心的欧几里得距离的平方和。目标是找到这样的簇中心,以使得总的WCSS最小。
步骤
K-means算法通常遵循以下步骤:
- 初始化:随机选择K个数据点作为初始簇中心。也有其他的初始化方法,如K-means++,它以一种更精心设计的方式选择初始点,以改进聚类结果的质量和算法的收敛速度。
- 分配:将每个数据点分配给最近的簇中心。这里,“最近”通常是指在欧几里得距离意义上的最近。
- 更新:对于每个簇,计算所有分配给该簇的点的均值,并将该均值作为新的簇中心。
- 重复:重复步骤2和3,直到满足某个停止准则。常见的停止准则包括簇中心的变化小于某个阈值、达到预定的迭代次数,或WCSS的改变量小于某个阈值。
算法特点
- 优点:简单、直观、易于实现,对于大量数据集也相对高效。
- 缺点:需要预先指定K值,但在实际应用中K的最佳值通常未知,可能需要使用诸如肘部法则(Elbow Method)等技术来估计。K-means对初始簇中心的选择敏感,可能导致局部最优解。此外,K-means假设簇是凸形和同质的,这对于某些应用来说可能是个限制。
- 变体:有多种K-means的变体,如K-means++(改进的初始化方法)、Mini-Batch K-means(适用于大规模数据集的高效版本)等。
数学表达
给定数据集
D
=
{
x
1
,
x
2
,
.
.
.
,
x
n
}
D = \{x_1, x_2, ..., x_n\}
D={x1,x2,...,xn},其中每个
x
i
x_i
xi是一个特征向量。K-means试图找到一组K个簇中心
C
=
{
c
1
,
c
2
,
.
.
.
,
c
K
}
C = \{c_1, c_2, ..., c_K\}
C={c1,c2,...,cK},以最小化WCSS目标函数:
J
(
C
)
=
∑
i
=
1
n
min
c
j
∈
C
∥
x
i
−
c
j
∥
2
J(C) = \sum_{i=1}^{n} \min_{c_j \in C} \|x_i - c_j\|^2
J(C)=i=1∑ncj∈Cmin∥xi−cj∥2
这是一个NP难问题,但K-means通过迭代优化提供了一个有效的启发式解。
实现
在实现时,K-means算法的效率和质量很大程度上依赖于初始化方法和距离计算的效率。