1. 题目描述
2. 题目分析与解析
2.1 思路一——递归
为了解决问题“检查一个二叉树是否是对称的”,我们需要判断树的左子树和右子树是否是彼此的镜像。这意味着树的左子树的左侧应该与右子树的右侧相同,左子树的右侧应该与右子树的左侧相同。
- 定义问题:
对称二叉树的定义是,一个树和它的镜像是相同的。即根节点的左子树和右子树镜像对称。 - 基本情况:
- 如果两个树的根节点都为空,则它们是对称的。
- 如果一个树的根节点为空而另一个不为空,则它们不对称。
- 递归逻辑:
- 对于两个节点,检查它们的值是否相等。
- 如果相等,进一步检查第一个树的左子树与第二个树的右子树是否对称,以及第一个树的右子树与第二个树的左子树是否对称。
- 递归实现:
- 我们可以定义一个辅助函数
check(TreeNode p, TreeNode q)
,它接受两个节点,并返回一个布尔值表示这两个子树是否对称。 - 我们首先检查
p
和q
是否都不为空。 - 然后比较
p
和q
的值,如果它们相等,再递归地调用check(p.left, q.right)
和check(p.right, q.left)
。
- 我们可以定义一个辅助函数
- 整体函数:
- 主函数
isSymmetric(TreeNode root)
判断整个树是否对称,只需调用check(root, root)
。
- 主函数
实际上就是判断一个树是否沿中轴对称就是看它看作两个树:
- 如果两个根节点的值不相等,那么返回false,确保根节点的值相等
- 如果根节点的左值与另一个根节点的右值不等,或者根节点的右值与另一个根节点的左值不等,那么返回false
- 只有当根节点的值相等,且根节点的左右子节点分别与另一个根节点的右左子节点相等时,才返回true
2.2 思路二——迭代
因为在理论上,任何递归算法都可以被转换为迭代算法。这是因为递归本质上是函数自调用,使用的是计算机的调用栈来保存状态;而迭代算法使用的是循环结构,在循环中显式使用数据结构(如栈或队列)来保存状态和管理控制流。
因此我们将递归算法改为迭代来解决。这种方法是将递归的深度优先搜索(DFS)转换为广度优先搜索(BFS),利用队列实现。下面是这种方法的详细解释和思路:
初始化
首先,定义一个队列 q
,类型为 Queue<TreeNode>
,用来存放需要比较的节点对。初始时,将根节点 root
两次加入队列,代表要比较树的左半边与右半边。
迭代过程
-
循环遍历:
使用一个while
循环来处理队列中的元素,直到队列为空。在每次循环中,从队列中取出两个节点(u
和v
),这两个节点是需要比较的对称节点。 -
节点比较:
- 如果两个节点都为
null
,则继续下一轮循环(这表示对称位置的两个分支都正确地结束了)。 - 如果一个节点为
null
而另一个不为null
,或者两个节点的值不相等,则树不对称,函数返回false
。
- 如果两个节点都为
-
节点的子节点入队:
- 将
u
的左子节点和v
的右子节点入队,这两个节点在对称的二叉树中应该是相等的。 - 将
u
的右子节点和v
的左子节点入队,同样,这两个节点在对称的二叉树中应该是相等的。
- 将
结束条件
- 如果队列被完全处理完并且在所有比较中节点都匹配(即没有提前返回
false
),则函数返回true
,表明这棵树是对称的。
2.3 思路三
这种解题思路通过直接修改树的结构来判断二叉树是否对称,具体通过翻转二叉树的左子树,然后判断翻转后的左子树与原始的右子树是否完全相同。这里的核心思想是,如果一棵树的左子树是右子树的镜像,那么将左子树翻转后,它应该与右子树完全相同。
翻转左子树 (reverse
方法)
-
递归翻转:
- 如果当前节点为
null
,返回null
,表示该分支已处理完。 - 递归翻转当前节点的左子节点,并存储返回的新根节点。
- 递归翻转当前节点的右子节点。
- 将当前节点的左指针指向翻转后的右子树,右指针指向翻转后的左子树。
- 如果当前节点为
-
返回翻转后的根节点:
- 每次递归调用后,返回当前节点,它现在代表翻转后的子树。
判断两棵树是否相同 (isSameTree
方法)
- 递归比较两个树:
- 如果两个节点都为
null
,返回true
,表示对应的子树在这一层都结束,且相同。 - 如果其中一个节点为
null
而另一个不为null
,返回false
,表示树结构不同。 - 比较两个节点的值是否相等,如果不相等,返回
false
。 - 递归比较左子节点和左子节点,右子节点和右子节点。
- 如果两个节点都为
主函数逻辑
-
翻转左子树:
- 调用
reverse
方法对root.left
进行翻转。
- 调用
-
比较翻转后的左子树和原右子树:
- 调用
isSameTree
方法比较root.left
(翻转后的左子树)和root.right
(原始的右子树)。
- 调用
3. 代码实现
3.1 思路一
3.2 思路二
3.3 思路三
4. 相关复杂度分析
方法1: 使用递归
时间复杂度
- 这种方法通过递归访问每一个节点,对于每个节点,递归比较其左子节点和对称的右子节点。
- 最坏情况下,每个节点都会被访问一次,因此时间复杂度为 O ( n ) O(n) O(n),其中 n n n 是树中节点的数量。
空间复杂度
- 由于使用递归,主要的空间消耗来自于递归栈。
- 在最坏的情况下(当树完全不平衡时),递归的深度可以达到 n n n,因此空间复杂度为 O ( n ) O(n) O(n)。
- 在最佳情况下(树完全平衡时),递归深度为 O ( log n ) O(\log n) O(logn),因此空间复杂度为 O ( log n ) O(\log n) O(logn)。
方法2: 使用迭代
时间复杂度
- 使用一个队列来按层比较节点,确保每个节点都被访问并比较一次,所以时间复杂度为 O ( n ) O(n) O(n)。
空间复杂度
- 在最坏的情况下,队列中可能包含接近 n / 2 n/2 n/2 个节点(考虑到最后一层的宽度),因此空间复杂度也为 O ( n ) O(n) O(n)。
方法3: 翻转左子树后比较两子树
时间复杂度
- reverse 函数遍历所有节点一次,时间复杂度为 O ( n / 2 ) = O ( n ) O(n/2) = O(n) O(n/2)=O(n),因为只翻转左子树。
- isSameTree 函数也遍历所有节点一次,时间复杂度为 O ( n ) O(n) O(n)。
- 总的时间复杂度为 O ( n ) O(n) O(n)。
空间复杂度
- reverse 和 isSameTree 函数都使用递归,因此空间复杂度主要由递归栈决定。
- 在最坏情况下,递归深度可以达到 n n n(非平衡树),因此空间复杂度为 O ( n ) O(n) O(n)。
- 在最佳情况下(树完全平衡时),递归深度为 O ( log n ) O(\log n) O(logn),因此空间复杂度为 O ( log n ) O(\log n) O(logn)。