泛函分析复习笔记

泛函分析复习笔记

banach空间上的有界线性算子

part 1 有界线性算子

算子的范数

​ 对于有界线性算子的概念,设 T T T是从赋范线性空间 ⟨ X , ∥ ⋅ ∥ 1 ⟩ \langle X, \parallel \cdot \parallel _1\rangle X,1到赋范线性空间 ⟨ X , ∥ ⋅ ∥ 2 ⟩ \langle X,\parallel\cdot \parallel_2\rangle X,2的函数(或映射),如果对一切 x , y ∈ X x,y\in X x,yX和数 α , β \alpha,\beta α,β都有
T ( α x + β y ) = α T x + β T y T(\alpha x+\beta y)=\alpha Tx+\beta Ty T(αx+βy)=αTx+βTy
则称 T T T为从 X X X Y Y Y的线性算子,如果还存在常数 C > 0 C>0 C>0,使对一切 x ∈ X x\in X xX都有
∥ T x ∥ 2 ≤   C ∥ x ∥ 1 , \parallel Tx\parallel_2\le\ C\parallel x \parallel_1, Tx2 Cx1,
则称 T T T有界.从 X X X Y Y Y的全体有界线性算子的集合为 L ( X , Y ) L(X,Y) L(X,Y),而 L ( X , Y ) L(X,Y) L(X,Y)简记为 L ( X ) L(X) L(X) .设 A ∈ L ( X , Y ) A\in L(X,Y) AL(X,Y),我们知道 A A A的范数为
∥ A ∥ = sup ⁡ ∥ x ∥ = 1 ∥ A x ∥ = sup ⁡ ∥ x ∥ ≤ 1 ∥ A x ∥ = sup ⁡ x ≠ 0 ∥ A x ∥ ∥ x ∥ . \parallel A\parallel=\sup_{\parallel x\parallel=1}\parallel Ax\parallel=\sup_{\parallel x\parallel\le1}\parallel Ax\parallel=\sup_{x\neq 0}\frac{\parallel Ax\parallel}{\parallel x\parallel}. A∥=x∥=1supAx∥=x∥≤1supAx∥=x=0supxAx.
关于 sup ⁡ ∥ x ∥ = 1 ∥ A x ∥ = sup ⁡ ∥ x ∥ ≤ 1 ∥ A x ∥ \sup\limits_{\parallel x\parallel=1}\parallel Ax\parallel=\sup\limits_{\parallel x\parallel\le1}\parallel Ax\parallel x∥=1supAx∥=x∥≤1supAx的证明:

我们知道关于算子范数的定义是如上的 C C C的下确界,即以 A A A为例, ∥ A ∥ = i n f { C > 0 ∣ ∥ T x ∥ 2 ≤ C ∥ x ∥ 1 } \parallel A\parallel=inf\lbrace C>0|\parallel Tx\parallel_2\le C\parallel x\parallel_1\rbrace A∥=inf{C>0∣Tx2Cx1}

从而有:
∥ A ∥ = i n f { C > 0 ∣ ∀ x ∈ X , ∥ T x ∥ 2 ≤ C ∥ x ∥ 1 } = i n f { C > 0 ∣ ∀ x ≠ θ x ∈ X , ∥ T x ∥ 2 ∥ x ∥ 1 ≤ C } = sup ⁡ x ∈ X x ≠ θ x ∥ T x ∥ x ∥ 1 ∥ 2 = sup ⁡ ∥ x ∥ 1 = 1 ∥ T x ∥ 2 \begin{align*} \parallel A\parallel&=inf\lbrace C>0|\forall x\in X,\parallel Tx\parallel_2\le C\parallel x\parallel_1\rbrace \\&=inf\lbrace C>0|\forall x\neq\theta_x\in X,\frac{\parallel Tx\parallel_2}{\parallel x\parallel_1}\le C\rbrace\\&=\sup_{\begin{aligned} x&\in X \\ x&\neq \theta_x \end{aligned}} \parallel T\frac{x}{\parallel x\parallel_1}\parallel_2\\&=\sup_{\parallel x\parallel_1=1}\parallel Tx\parallel_2 \end{align*} A=inf{C>0∣∀xX,Tx2Cx1}=inf{C>0∣∀x=θxX,x1Tx2C}=xxX=θxsupTx1x2=x1=1supTx2
现在我们证明右边第二个等号,注意到 sup ⁡ ∥ x ∥ 1 = 1 ∥ T x ∥ 2 ≤ sup ⁡ ∥ x ∥ 1 ≤ 1 ∥ T x ∥ 2 \sup\limits_{\parallel x\parallel_1=1}\parallel Tx\parallel_2\le \sup\limits_{\parallel x \parallel_1\le1}\parallel Tx\parallel_2 x1=1supTx2x11supTx2这是显然的,故而我们只需要证明 sup ⁡ ∥ x ∥ 1 = 1 ∥ T x ∥ 2 ≥ sup ⁡ ∥ x ∥ 1 ≤ 1 ∥ T x ∥ 2 \sup\limits_{\parallel x\parallel_1=1}\parallel Tx\parallel_2\ge \sup\limits_{\parallel x \parallel_1\le1}\parallel Tx\parallel_2 x1=1supTx2x11supTx2即可,故而有对于任取 x x x满足$\parallel x\parallel_1\le1 , 不妨令 ,不妨令 ,不妨令y=\frac{x}{\parallel x\parallel_1} , 进而我们可以得出 ,进而我们可以得出 ,进而我们可以得出\parallel y\parallel_1=1 , 故有 ,故有 ,故有\parallel Ty\parallel_2\le\sup\limits_{\parallel x\parallel=1}\parallel Tx\parallel_2 ,同时对于 ,同时对于 ,同时对于\parallel Ty\parallel_2$我们可以得到如下的这个式子:
∥ T y ∥ 2 = ∥ T x ∥ x ∥ 1 ∥ 2 = ∥ T x ∥ 2 ∥ x ∥ 1 . \parallel Ty\parallel_2=\parallel T\frac{x}{\parallel x\parallel_1}\parallel_2=\frac{\parallel Tx\parallel_2}{\parallel x\parallel_1}. Ty2=∥Tx1x2=x1Tx2.
从而我们可以进一步进行说明 ∥ T x ∥ 2 ≤ ∥ T x ∥ 2 ∥ x ∥ 1 ≤ sup ⁡ ∥ x ∥ 1 = 1 ∥ T x ∥ 2 \parallel Tx\parallel_2\le\frac{\parallel Tx\parallel_2}{\parallel x\parallel_1}\le\sup\limits_{\parallel x \parallel_1=1}\parallel Tx\parallel_2 Tx2x1Tx2x1=1supTx2,现在思路就十分清晰了,我们可以利用数学分析的知识,得到 sup ⁡ ∥ x ∥ 1 = 1 ∥ T x ∥ 2 ≥ sup ⁡ ∥ x ∥ 1 ≤ 1 ∥ T x ∥ 2 \sup\limits_{\parallel x\parallel_1=1}\parallel Tx\parallel_2\ge \sup\limits_{\parallel x \parallel_1\le1}\parallel Tx\parallel_2 x1=1supTx2x11supTx2,从而得证。

现在叙述一些命题和定理并加以证明:

命题1.1:若 A , B ∈ L ( X , Y ) , α A,B\in L(X,Y),\alpha A,BL(X,Y),α是常数,则 A + B , α A ∈ L ( X , Y ) A+B,\alpha A\in L(X,Y) A+B,αAL(X,Y),而且
∥ A + B ∥ ≤ ∥ A ∥ + ∥ B ∥ , ∥ α A ∥ ≤ ∣ α ∣ ∥ A ∥ \parallel A+B\parallel\le\parallel A\parallel+\parallel B\parallel,\parallel\alpha A\parallel\le|\alpha|\parallel A\parallel A+B∥≤∥A+B,αA∥≤αA
此外若 ∥ A ∥ = 0 \parallel A\parallel=0 A∥=0当且仅当 A = 0 A=0 A=0,,从而我们可以由赋范线性空间的定义可以得到此时 L ( X , Y ) L(X,Y) L(X,Y)按算子范数是赋范线性空间。

证明如下:
∥ A + B ∥ = sup ⁡ ∥ x ∥ = 1 ∥ ( A + B ) x ∥ ≤ sup ⁡ ∥ x ∥ = 1 ( ∥ A x ∥ + ∥ B x ∥ ) ≤ sup ⁡ ∥ x ∥ = 1 ∥ A x ∥ + sup ⁡ ∥ x ∥ = 1 ∥ B x ∥ = ∥ A ∥ + ∥ B ∥ \begin{aligned} \parallel A+B\parallel&=\sup\limits_{\parallel x\parallel=1}\parallel (A+B)x\parallel\\&\le\sup\limits_{\parallel x\parallel=1}(\parallel Ax\parallel+\parallel Bx\parallel)\\&\le\sup\limits_{\parallel x\parallel=1}\parallel Ax\parallel+\sup\limits_{\parallel x\parallel=1}\parallel Bx\parallel\\&=\parallel A\parallel+\parallel B\parallel \end{aligned} A+B=x∥=1sup(A+B)xx∥=1sup(Ax+Bx)x∥=1supAx+x∥=1supBx=∥A+B

∥ α A ∥ = sup ⁡ ∥ x ∥ = 1 ∥ ( α A ) x ∥ = sup ⁡ ∥ x ∥ = 1 ∥ α ( A x ) ∥ = ∣ α ∣ sup ⁡ ∥ x ∥ = 1 ∥ A x ∥ = ∣ α ∣ ∥ A ∥ \begin{aligned} \parallel \alpha A\parallel&=\sup\limits_{\parallel x\parallel=1}\parallel (\alpha A)x\parallel\\&=\sup\limits_{\parallel x\parallel=1}\parallel\alpha(Ax)\parallel\\&=|\alpha|\sup\limits_{\parallel x\parallel=1}\parallel Ax\parallel\\&=|\alpha|\parallel A\parallel \end{aligned} αA=x∥=1sup(αA)x=x∥=1supα(Ax)=αx∥=1supAx=αA

此外,若 ∥ A ∥ = 0 ⇔ sup ⁡ ∥ x ∥ = 1 ∥ A x ∥ = 0 ⇔ ∥ A x ∥ = 0 , ∀ ∥ x ∥ = 1 ⇔ A = 0 \parallel A\parallel=0\Leftrightarrow\sup\limits_{\parallel x\parallel=1}\parallel Ax\parallel=0\Leftrightarrow\parallel Ax\parallel=0,\forall \parallel x\parallel=1\Leftrightarrow A=0 A∥=0x∥=1supAx∥=0⇔∥Ax∥=0,x∥=1A=0

证毕。

命题1.2 设 X X X是赋范线性空间, Y Y Y B a n a c h Banach Banach空间,则 L ( X , Y ) L(X,Y) L(X,Y)也是 B a n a c h Banach Banach空间.

证明如下:

我们由命题1.1可知, L ( X , Y ) L(X,Y) L(X,Y)是按算子范数的赋范线性空间, B a n a c h Banach Banach空间的定义是完备的赋范线性空间。从而我们只需要证明 L ( X , Y ) L(X,Y) L(X,Y)的完备性,复习一下完备性的定义,即距离空间中的任何柯西序列都收敛,并且收敛到该空间中,则称该距离空间是完备的。我们设 { A n } n = 1 ∞ \lbrace A_n\rbrace_{n=1}^{\infin} {An}n=1 L ( X , Y ) L(X,Y) L(X,Y)中的柯西序列,则对任何 x ∈ X x\in X xX,从
∥ A n x − A m x ∥ ≤ ∥ A n − A m ∥ ∥ x ∥ , \parallel A_nx-A_mx\parallel\le\parallel A_n-A_m\parallel\parallel x\parallel, AnxAmx∥≤∥AnAm∥∥x,
从而有 { A n x } n = 1 ∞ \lbrace A_nx\rbrace_{n=1}^{\infin} {Anx}n=1 Y Y Y中的柯西序列,而 Y Y Y是完备的,从而我们可以得到的 ∃ y ∈ Y \exist y\in Y yY,使得 lim ⁡ n → ∞ A n x = y \lim\limits_{n\to \infin}A_nx=y nlimAnx=y.现在定义 A x = y Ax=y Ax=y,其中 A x = lim ⁡ n → ∞ A n x = y Ax=\lim\limits_{n\to\infin}A_nx=y Ax=nlimAnx=y,从而我们可以知道 A A A是线性的,现在我们证明 A ∈ L ( X , Y ) A\in L(X,Y) AL(X,Y),这里需要引入一个知识点(距离空间中的任何柯西序列都是有界的),我们先来证明一下这个引入的知识点:

证明如下:

首先我们要知道什么是距离空间的有界,距离空间 X X X中的点集 S S S称为有界的,如果存在 X X X中的某个球 B ( x 0 , r ) B(x_0,r) B(x0,r)使得 B ( x 0 , r ) ⊃ S B(x_0,r)\supset S B(x0,r)S,那么对于距离空间中的任意一个柯西序列,我们设为 { x n } n = 1 ∞ \lbrace x_n\rbrace_{n=1}^{\infin} {xn}n=1,即有对于
∀ ε > 0 , ∃ N > 0 , s . t n , m ≥ N , d ( x n , x m ) < ε . \forall \varepsilon>0,\exist N>0,s.t\quad n,m\ge N,d(x_n,x_m)<\varepsilon. ε>0,N>0,s.tn,mN,d(xn,xm)<ε.
我们现在令 ε = r 0 , ∃ N ∈ N ∗ , s . t ∀ n > N , d ( x n , x N ) < r 0 \varepsilon=r_0,\exist N\in N^{*},s.t\quad\forall n> N,d(x_n,x_N)<r_0 ε=r0,NN,s.tn>N,d(xn,xN)<r0,再令
r 1 = d ( x 1 , x N ) , r 2 = d ( x 2 , x N ) , ⋯   , r N − 1 = d ( x N − 1 , x N ) r_1=d(x_1,x_N),r_2=d(x_2,x_N),\cdots,r_{N-1}=d(x_{N-1},x_N) r1=d(x1,xN),r2=d(x2,xN),,rN1=d(xN1,xN)
从而我们令 x 0 = x N , r = m a x { r 0 , r 1 , r 2 , ⋯   , r N − 1 } x_0=x_N,r=max\lbrace r_0,r_1,r_2,\cdots,r_{N-1}\rbrace x0=xN,r=max{r0,r1,r2,,rN1},那么则有 ∀ n ≥ 1 , d ( x n , x 0 ) < r \forall n\ge1,d(x_n,x_0)<r n1,d(xn,x0)<r,即 B ( x 0 , r ) ⊃ S B(x_0,r)\supset S B(x0,r)S,即证。

从而通过该知识点得到的结论,我们可以得出赋范线性空间的柯西序列都是有界的,从而存在一个常数 M > 0 M>0 M>0,使 ∥ A n ∥ ≤ M , n = 1 , 2 , 3 , ⋯   . \parallel A_n\parallel\le M,n=1,2,3,\cdots. An∥≤M,n=1,2,3,.
∥ A x ∥ = lim ⁡ n → ∞ ∥ A n x ∥ ≤ lim ⁡ n → ∞ ∥ A n ∥ ∥ x ∥ ≤ M ∥ x ∥ . \parallel Ax\parallel=\lim\limits_{n\to\infin}\parallel A_nx\parallel\le\lim\limits_{n\to\infin}\parallel A_n\parallel\parallel x\parallel\le M\parallel x\parallel. Ax∥=nlimAnx∥≤nlimAn∥∥x∥≤Mx.
从而有,我们可以得到 A ∈ L ( X , Y ) A\in L(X,Y) AL(X,Y).
∥ A n − A ∥ = sup ⁡ ∥ x ∥ = 1 ∥ ( A n − A ) x ∥ = sup ⁡ ∥ x ∥ = 1 lim ⁡ m → ∞ ∥ ( A n − A m ) x ∥ = lim ⁡ m → ∞ sup ⁡ ∥ x ∥ = 1 ∥ ( A n − A m ) x ∥ = lim ⁡ m → ∞ ∥ A n − A m ∥ → 0 , \begin{aligned} \parallel A_n-A\parallel&=\sup\limits_{\parallel x\parallel=1}\parallel(A_n-A)x\parallel\\&=\sup\limits_{\parallel x\parallel=1}\lim\limits_{m\to\infin}\parallel (A_n-A_m)x\parallel\\&=\lim\limits_{m\to\infin}\sup\limits_{\parallel x\parallel=1}\parallel (A_n-A_m)x\parallel\\&=\lim\limits_{m\to\infin}\parallel A_n-A_m\parallel\rightarrow0, \end{aligned} AnA=x∥=1sup(AnA)x=x∥=1supmlim(AnAm)x=mlimx∥=1sup(AnAm)x=mlimAnAm∥→0,
故当 n → ∞ n\to\infin n.即有柯西列 { A n } n = 1 ∞ \lbrace A_n\rbrace_{n=1}^{\infin} {An}n=1收敛到 A A A.从而完备性得证,即 L ( X , Y ) L(X,Y) L(X,Y) B a n a c h Banach Banach空间.

命题1.3 设 A , B ∈ L ( X ) A,B\in L(X) A,BL(X),则 A B ∈ L ( X ) AB\in L(X) ABL(X),且
∥ A B ∥ ≤ ∥ A ∥ ∥ B ∥ . \parallel AB\parallel\le\parallel A\parallel\parallel B\parallel. AB∥≤∥A∥∥B.
特别地,对任意的正整数 n n n
∥ A n ∥ ≤ ∥ A ∥ n . \parallel A^n\parallel\le\parallel A\parallel^n. An∥≤∥An.
证明如下:

对于 L ( X ) L(X) L(X)即为从 X X X X X X上的全体有界线性算子得集合.因为 A , B ∈ L ( X ) A,B\in L(X) A,BL(X),存在常数 C , D > 0. C,D>0. C,D>0.我们有 ∥ A x ∥ ≤ C ∥ x ∥ , ∥ B x ∥ ≤ D ∥ x ∥ \parallel Ax\parallel\le C\parallel x\parallel,\parallel Bx\parallel\le D\parallel x\parallel Ax∥≤Cx,Bx∥≤Dx,现证明算子 A B AB AB的线性性质,从而对于任意的常数 α , β \alpha,\beta α,β,以及任意的 x , y ∈ X x,y\in X x,yX,我们有 ( A B ) ( α x + β y ) = A ( B ( α x + β y ) ) (AB)(\alpha x+\beta y)=A(B(\alpha x+\beta y)) (AB)(αx+βy)=A(B(αx+βy)),通过 A , B A,B A,B的线性性质,我们可以得到 α ( A B ) x + β ( A B ) y \alpha(AB)x+\beta(AB)y α(AB)x+β(AB)y,从而线性性质得证,现证算子 A B AB AB有界,对于
∥ ( A B ) x ∥ = ∥ A ( B x ) ∥ ≤ ∣ C ∣ ∥ B x ∥ ≤ ∣ C ∣ ∣ D ∣ ∥ x ∥ = ∣ C D ∣ ∥ x ∥ \parallel (AB)x\parallel=\parallel A(Bx)\parallel\le |C|\parallel Bx\parallel\le|C| |D|\parallel x\parallel=|CD|\parallel x\parallel (AB)x∥=∥A(Bx)∥≤CBx∥≤C∣∣Dx∥=CDx
从而有算子 A B ∈ L ( X ) AB\in L(X) ABL(X),我们现在证明 ∥ A B ∥ ≤ ∥ A ∥ ∥ B ∥ \parallel AB\parallel\le\parallel A\parallel\parallel B\parallel AB∥≤∥A∥∥B,从而我们可以通过:
∥ A B ∥ = max ⁡ x ≠ 0 ∥ A B x ∥ ∥ x ∥ ≤ max ⁡ x ≠ 0 ∥ A ∥ ∥ B x ∥ ∥ x ∥ = ∥ A ∥ max ⁡ x ≠ 0 ∥ B x ∥ ∥ x ∥ = ∥ A ∥ ∥ B ∥ \begin{aligned} \parallel AB\parallel&=\max\limits_{x\neq0}\frac{\parallel ABx\parallel}{\parallel x\parallel}\\&\le\max\limits_{x\neq0}\frac{\parallel A\parallel\parallel Bx\parallel}{\parallel x\parallel}\\&=\parallel A \parallel\max\limits_{x\neq0}\frac{\parallel Bx\parallel}{\parallel x\parallel}\\&=\parallel A\parallel\parallel B \parallel \end{aligned} AB=x=0maxxABxx=0maxxA∥∥Bx=∥Ax=0maxxBx=∥A∥∥B
A = B A=B A=B,则 ∥ A n ∥ ≤ ∥ A ∥ n \parallel A^n\parallel\le\parallel A\parallel^n An∥≤∥An.利用上面结论,显然成立.

在叙述命题1.4之前,我们先给出一个定义:

定义1.1 设 ∥ ⋅ ∥ 1 \parallel\cdot\parallel_1 1 ∥ ⋅ ∥ 2 \parallel \cdot\parallel_2 2都是线性空间 X X X上的范数,如果对于 X X X中任意点列 { x n } n = 1 ∞ , ∥ x n ∥ 1 → 0 \lbrace x_n\rbrace_{n=1}^{\infin},\parallel x_n\parallel_1\to0 {xn}n=1,xn10蕴含 ∥ x n ∥ 2 → 0 , \parallel x_n\parallel_2\to0, xn20,则称范数 ∥ ⋅ ∥ 1 \parallel\cdot\parallel_1 1强于范数 ∥ ⋅ ∥ 2 \parallel \cdot\parallel_2 2,如果两个范数任何一个都强于另外一个,则称它们为等价的范数.

下面我们来看命题1.4.

命题1.4 在线性空间 X X X上的范数设 ∥ ⋅ ∥ 1 \parallel\cdot\parallel_1 1 ∥ ⋅ ∥ 2 \parallel \cdot\parallel_2 2等价的充分必要条件为存在正数 r 1 , r 2 r_1,r_2 r1,r2,使
r 1 ≤ ∥ x ∥ 2 ∥ x ∥ 1 ≤ r 2 , 当 x ≠ 0. r_1\le\frac{\parallel x\parallel_2}{\parallel x\parallel_1}\le r_2,当x\neq0. r1x1x2r2,x=0.
证明如下:

我们先证明这样一个问题,即若 ∥ ⋅ ∥ 1 \parallel\cdot\parallel_1 1强于 ∥ ⋅ ∥ 2 \parallel\cdot\parallel_2 2,当且仅当存在一个常数$C>0\quad s.t\quad \parallel \cdot\parallel_2\le C\parallel\cdot\parallel_1 $.

充分性是显然的,现在我们主要去证明必要性.利用反证法,那么就有 ∀ n ∈ N , ∃ x n ∈ X , s . t ∥ x n ∥ 2 ≥ n ∥ x n ∥ 1 \forall n\in N,\exist x_n\in X,s.t\quad \parallel x_n\parallel_2\ge n\parallel x_n\parallel_1 nN,xnX,s.txn2nxn1,从而我们令 y n ≜ x n ∥ x n ∥ 2 y_n\triangleq\frac{x_n}{\parallel x_n\parallel_2} ynxn2xn.我们可以得到 ∥ y n ∥ 2 = 1 , 0 ≤ ∥ y n ∥ 1 < 1 n \parallel y_n\parallel_2=1,0\le\parallel y_n\parallel_1<\frac{1}{n} yn2=1,0≤∥yn1<n1.所以有 ∥ y n ∥ 1 → 0 ( n → ∞ ) \parallel y_n\parallel_1\to0(n\to\infin) yn10(n).而又因为 ∥ ⋅ ∥ 1 \parallel\cdot\parallel_1 1强于 ∥ ⋅ ∥ 2 \parallel\cdot\parallel_2 2.从而我们可以得出 ∥ y n ∥ 2 → 0 ( n → ∞ ) \parallel y_n\parallel_2\to0(n\to\infin) yn20(n),这与我们前文中的结果矛盾,从而假设不成立.证毕.

我们现在可以通过上面的这个证明,就可以完成命题1.4的证明.

算子的逆

命题1.5 设 X X X Y Y Y都是赋范线性空间, A : X → Y A:X\to Y A:XY是线性映射.那么 A A A是单射的且定义在 R ( A ) R(A) R(A)上的算子 A − 1 A^{-1} A1是连续的充分必要条件是存在常数 m > 0 m>0 m>0,使 ∥ A x ∥ ≥ m ∥ x ∥ , ∀ x ∈ X \parallel Ax\parallel\ge m\parallel x\parallel,\forall x\in X Ax∥≥mx,xX.

证明如下:

先证充分性,首先我们先证明 A A A是单射,即一对一的.那么若有 ∃ x 1 , x 2 ∈ X , s . t A x 1 = A x 2 \exist x_1,x_2\in X,s.t\quad Ax_1=Ax_2 x1,x2X,s.tAx1=Ax2,即有 A ( x 1 − x 2 ) = 0 A(x_1-x_2)=0 A(x1x2)=0,从而由 m ∥ x 1 − x 2 ∥ ≤ ∥ A ( x 1 − x 2 ) ∥ = 0 m\parallel x_1-x_2\parallel\le \parallel A(x_1-x_2)\parallel=0 mx1x2∥≤∥A(x1x2)∥=0,可知 ∥ x 1 − x 2 ∥ = 0 \parallel x_1-x_2\parallel=0 x1x2∥=0,那么就有 x 1 = x 2 x_1=x_2 x1=x2,故 A A A为单射,那么我们可以得出 T − 1 T^{-1} T1是定义在 R ( A ) R(A) R(A)上的线性映射.若设 y = A x y=Ax y=Ax,则 x = A − 1 y x=A^{-1}y x=A1y.由条件可知, ∥ y ∥ ≥ m ∥ A − 1 y ∥ \parallel y\parallel\ge m\parallel A^{-1}y\parallel y∥≥mA1y.因为 m > 0 m>0 m>0,从而我们可以得知算子 A − 1 A^{-1} A1是有界的.那么它就是连续的.

现证必要性,利用反证法,那么即对于 ∀ n ∈ N ∗ , ∃ x n ∈ X , s . t ∥ A x n ∥ < 1 n ∥ x n ∥ \forall n\in N^*,\exist x_n\in X,s.t\parallel Ax_n\parallel<\frac{1}{n}\parallel x_n\parallel nN,xnX,s.tAxn∥<n1xn.我们令 y n = A x n y_n=Ax_n yn=Axn.从而可知 ∥ y n ∥ < 1 n ∥ A − 1 y n ∥ \parallel y_n\parallel<\frac{1}{n}\parallel A^{-1}y_n\parallel yn∥<n1A1yn.从而由算子 A − 1 A^{-1} A1并不是有界的,这与题目条件中它是连续的矛盾.从而假设不成立.必要性即证.

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值