hahn-banach定理

泛函分析复习笔记

Part 2 Hahn-Banach定理

1 扩张定理

定理2.1 (Banach扩张定理)

f ( x ) f(x) f(x)是实线性空间 X X X中的线性流形 G G G上的实线性泛函。如果由 X X X上的实值泛函 p ( x ) p(x) p(x),使
( 1 )   p ( x + y ) ≤ p ( x ) + p ( y ) , p ( t x ) = t p ( x ) , i f   x , y ∈ X , t ≥ 0 ; ( 2 )   f ( x ) ≤ p ( x ) , i f   x ∈ G . (1)\ p(x+y)\le p(x)+p(y),p(tx)=tp(x),if \ x,y \in X ,t\ge 0;\\ (2) \ f(x)\le p(x),if \ x\in G. (1) p(x+y)p(x)+p(y),p(tx)=tp(x),if x,yX,t0;(2) f(x)p(x),if xG.
则存在 X X X上的实线性泛函 F ( x ) F(x) F(x),使
F ( x ) = f ( x ) , i f   x ∈ G , F(x)=f(x),if \ x\in G , F(x)=f(x),if xG,

F ( x ) ≤ p ( x ) , i f   x ∈ X . F(x)\le p(x),if \ x\in X. F(x)p(x),if xX.
证 若 G = X G=X G=X,定理是显然的,下面假定 G ≠ X G \neq X G=X.设 x 0 ∈ X ∖ G x_0 \in X\setminus G x0XG,考虑如下形式的点集:
M = { λ x 0 + x : λ   i s   a   r e a l   n u m b e r , x ∈ G } . \mathscr M =\lbrace \lambda x_0+x:\lambda \ is\ a\ real\ number,x\in G\rbrace. M={λx0+x:λ is a real number,xG}.
它是包含了 G G G x 0 x_0 x0的最小的线性流形. 先往证在 M \mathscr M M上存在实线性泛函 F 1 ( x ) F_1(x) F1(x),使
F 1 ( x ) = f ( x ) , i f   x ∈ G , F 1 ( x ) ≤ p ( x ) , i f   x ∈ M . F_1(x)=f(x),if \ x\in G ,\\ F_1(x)\le p(x),if\ x\in\mathscr M. F1(x)=f(x),if xG,F1(x)p(x),if xM.
F 1 ( x 0 ) = r 0 F_1(x_0)=r_0 F1(x0)=r0(待定).根据对 F 1 F_1 F1的要求,必须
F 1 ( λ x 0 + x ) = λ F 1 ( x 0 ) + f ( x ) ≤ p ( λ x 0 + x ) , i f   λ ∈ R , X ∈ G . F_1(\lambda x_0+x)=\lambda F_1(x_0)+f(x)\le p(\lambda x_0+x),if\ \lambda \in R,X \in G. F1(λx0+x)=λF1(x0)+f(x)p(λx0+x),if λR,XG.
因此
λ r 0 ≤ p ( λ x 0 + x ) − f ( x ) \lambda r_0\le p(\lambda x_0+x)-f(x) λr0p(λx0+x)f(x)
对一切 λ ≠ 0 , x ∈ G \lambda \neq 0,x\in G λ=0,xG都成立.以下分两种情况来讨论.

λ > 0 \lambda >0 λ>0,
r 0 ≤ 1 λ [ p ( λ x 0 + x ) − f ( x ) ] = p ( x 0 + x λ ) − f ( x λ ) = p ( x 0 + x ′ ) − f ( x ′ ) , x ′ ∈ G . \begin{aligned} r_0 &\le\frac{1}{\lambda}[p(\lambda x_0+x)-f(x)]\\ &=p(x_0+\frac{x}{\lambda})-f(\frac{x}{\lambda})\\ &=p(x_0+x')-f(x'),x'\in G . \end{aligned} r0λ1[p(λx0+x)f(x)]=p(x0+λx)f(λx)=p(x0+x)f(x),xG.
λ < 0 \lambda <0 λ<0,
r 0 ≥ 1 λ [ p ( λ x 0 + x ) − f ( x ) ] = ∣ λ ∣ λ [ p ( λ x 0 ∣ λ ∣ + x ∣ λ ∣ ) − f ( x ∣ λ ∣ ) ] = − [ p ( − x 0 + x ′ ′ ) − f ( x ′ ′ ) ] , x ∈ G . \begin{aligned} r_0&\ge \frac{1}{\lambda}[p(\lambda x_0+x)-f(x)]\\ &=\frac{|\lambda|}{\lambda}[p(\frac{\lambda x_0}{|\lambda|}+\frac{x}{|\lambda|})-f(\frac{x}{|\lambda|})]\\ &=-[p(-x_0+x'')-f(x'')],x\in G. \end{aligned} r0λ1[p(λx0+x)f(x)]=λλ[p(λλx0+λx)f(λx)]=[p(x0+x′′)f(x′′)],xG.
从而有上述式子可转化为:
− [ p ( − x 0 + x ′ ′ ) − f ( x ′ ′ ) ] ≤ r 0 ≤ p ( x 0 + x ′ ) − f ( x ′ ) , x ′ , x ′ ′ ∈ G . -[p(-x_0+x'')-f(x'')]\le r_0\le p(x_0+x')-f(x'),x',x'' \in G. [p(x0+x′′)f(x′′)]r0p(x0+x)f(x),x,x′′G.
从而我们为要证明命题成立,则只需要证 r 0 r_0 r0右端恒不小于其左端,即通过对上式进行移项.得到
f ( x ′ ) + f ( x ′ ′ ) ≤ p ( x 0 + x ′ ) + p ( − x 0 + x ′ ′ )   ∀ x ′ , x ′ ′ ∈ G . f(x')+f(x'')\le p(x_0+x')+p(-x_0+x'')\ \forall x',x''\in G. f(x)+f(x′′)p(x0+x)+p(x0+x′′) x,x′′G.
而我们由题目已知条件(对于 f ( x ) f(x) f(x)为实线性泛函,以及 p ( x ) p(x) p(x)的条件)得出
f ( x ′ ) + f ( x ′ ′ ) = f ( x ′ + x ′ ′ ) ≤ p ( x ′ + x ′ ′ ) = p ( x ′ + x 0 − x 0 + x ′ ′ ) ≤ p ( x ′ + x 0 ) + p ( − x 0 + x ′ ′ ) . \begin{aligned} f(x')+f(x'')&=f(x'+x'')\\ &\le p(x'+x'')\\ &=p(x'+x_0-x_0+x'')\\ &\le p(x'+x_0)+p(-x_0+x''). \end{aligned} f(x)+f(x′′)=f(x+x′′)p(x+x′′)=p(x+x0x0+x′′)p(x+x0)+p(x0+x′′).
从而我们可以得到上述不等式成立,并令
sup ⁡ x ∈ G [ − p ( − x 0 + x ′ ′ ) + f ( x ′ ′ ) ] ≤ r 0 ≤ inf ⁡ x ∈ G [ p ( x ′ + x 0 ) − f ( x ′ ) ] \sup\limits_{x\in G}[-p(-x_0+x'')+f(x'')]\le r_0\le\inf\limits_{x\in G}[p(x'+x_0)-f(x')] xGsup[p(x0+x′′)+f(x′′)]r0xGinf[p(x+x0)f(x)]
现在我们考察实线性泛函 g ( x ) g(x) g(x),其定义域记作 D ( g ) \mathscr D(g) D(g).如果
G ⊂ D ( g ) , G\subset \mathscr D(g), GD(g),

g ( x ) = f ( x ) , i f   x ∈ G , g ( x ) ≤ p ( x ) , i f   x ∈ D ( g ) , g(x)=f(x),if \ x\in G,\\ g(x)\le p(x),if\ x\in\mathscr D(g), g(x)=f(x),if xG,g(x)p(x),if xD(g),
则称 g g g f f f的扩张.设 f f f的所有扩张的集合为 R \mathscr R R.规定$\mathscr R 中的序如下:若 中的序如下:若 中的序如下:若g_1,g_2\in\mathscr R , 且 ,且 ,\mathscr D(g_1)\subset\mathscr D(g_2),g_1(x)=g_2(x) , 当 ,当 ,x\in\mathscr D(g_1), 则 则 g_1\prec g_2 . 于是 .于是 .于是\mathscr R 是非空的部分有序集 . 对 是非空的部分有序集.对 是非空的部分有序集.\mathscr R 中任何完全有序子集 中任何完全有序子集 中任何完全有序子集\mathscr S , 可以做出实线性泛函 ,可以做出实线性泛函 ,可以做出实线性泛函h(x)$,使
D ( h ) = ⋃ g ∈ S D ( g ) h ( x ) = g ( x ) , i f   x ∈ D ( g ) , g ∈ S . \mathscr D (h)=\bigcup\limits_{g\in \mathscr S}\mathscr D(g)\\ h(x)=g(x),if\ x\in\mathscr D (g),g\in \mathscr S. D(h)=gSD(g)h(x)=g(x),if xD(g),gS.
则有 h ∈ R h\in\mathscr R hR,且对一切的 g ∈ S g\in \mathscr S gS,都有 g ≺ h g\prec h gh.即 h h h S \mathscr S S的上界.根据Zorn引理, R \mathscr R R中有极大元 F F F,当然 F F F f f f的扩张.如果 D ( F ) ≠ X \mathscr D(F)\neq X D(F)=X,则如前面的证明, F F F可以再扩张,这与 F F F为极大性矛盾.于是 D ( F ) = X \mathscr D(F)=X D(F)=X,即 F F F X X X上的实线性泛函,即证.

Claim 对于序的构造,这里由定义可以看作 g 2 ( x ) g_2(x) g2(x) g 1 ( x ) g_1(x) g1(x)的扩张,然后我们构造完全有序集or(Chain).以此为了引出Zorn引理,现在我们要证这个任意的Chain在$\mathscr R 中都有上界,所以我们可以根据定义的偏序关系,来构造这个上界,并证明它在 中都有上界,所以我们可以根据定义的偏序关系,来构造这个上界,并证明它在 中都有上界,所以我们可以根据定义的偏序关系,来构造这个上界,并证明它在\mathscr R 中,由于 C h a i n 的选取的任意性,我们不妨令这个上界的定义域包含了所有在这个任意的完全有序集中,使得对于任意的 中,由于Chain的选取的任意性,我们不妨令这个上界的定义域包含了所有在这个任意的完全有序集中,使得对于任意的 中,由于Chain的选取的任意性,我们不妨令这个上界的定义域包含了所有在这个任意的完全有序集中,使得对于任意的g\in \mathscr S , 我们都可以使得它的定义域在我们要构造的这个上界的定义域中,在利用我们构造的偏序的关系,给这个 ,我们都可以使得它的定义域在我们要构造的这个上界的定义域中,在利用我们构造的偏序的关系,给这个 ,我们都可以使得它的定义域在我们要构造的这个上界的定义域中,在利用我们构造的偏序的关系,给这个h(x) 附加条件,那么现在这个 附加条件,那么现在这个 附加条件,那么现在这个h(x) , 对于任意的 C h a i n 来说,都是它们的上界了 . 好了,现在我们只需要证明这个上界就在 ,对于任意的Chain来说,都是它们的上界了.好了,现在我们只需要证明这个上界就在 ,对于任意的Chain来说,都是它们的上界了.好了,现在我们只需要证明这个上界就在\mathscr R 中就好了,这里因为 中就好了,这里因为 中就好了,这里因为\mathscr R 是所有 是所有 是所有f 的扩张组成的集合,首先这个 C h a i n 本来就是它的子集,并且 的扩张组成的集合,首先这个Chain本来就是它的子集,并且 的扩张组成的集合,首先这个Chain本来就是它的子集,并且G\subset\mathscr D(g) 的,即有 的,即有 的,即有G\subset \mathscr D(h) , 且 ,且 ,h(x)=f(x),if \ x\in G , 因为 ,因为 ,因为h(x)=g(x),if\ x\in\mathscr D (g),g\in \mathscr S . 并且 .并且 .并且\mathscr D (h)=\bigcup\limits_{g\in \mathscr S}\mathscr D(g) 可以得到 可以得到 可以得到h(x)\le p(x),if \ x\in \mathscr D(h)$.

定理2.2 (Bohnenblust-Sobczyk) 设 f ( x ) f(x) f(x)是复线性空间 X X X之线性流形 G G G上的线性泛函.如果有 X X X上的实值泛函 p ( x ) p(x) p(x),使得
( 1 )   p ( x + y ) ≤ p ( x ) + p ( y ) , p ( α x ) = ∣ α ∣ p ( x ) , ∀ x , y ∈ X , α ∈ C ; ( 2 )   ∣ f ( x ) ∣ ≤ p ( x ) , i f   x ∈ G , \begin{aligned} &(1)\ p(x+y)\le p(x)+p(y),p(\alpha x)=\vert \alpha \vert p(x),\forall x,y\in X,\alpha \in C;\\ &(2)\ \vert f(x)\vert\le p(x),if\ x\in G, \end{aligned} (1) p(x+y)p(x)+p(y),p(αx)=αp(x),x,yX,αC;(2) f(x)p(x),if xG,
则存在 X X X上的线性泛函 F ( x ) F(x) F(x),使
F ( x ) = f ( x ) , i f   x ∈ G , F(x)=f(x),if\ x\in G, F(x)=f(x),if xG,

∣ F ( x ) ∣ ≤ p ( x ) , i f   x ∈ X . \vert F(x)\vert\le p(x),if\ x\in X. F(x)p(x),if xX.
定理2.3 (Hahn-Banach)对于赋范线性空间 X X X之线性流形 G G G上的连续线性泛函 f ( x ) f(x) f(x),恒有 X X X上的连续线性泛函 F ( x ) F(x) F(x),使
( 1 )   F ( x ) = f ( x ) , i f   x ∈ G , ( 2 )   ∥ F ∥ = ∥ f ∥ G . \begin{aligned} &(1)\ F(x)=f(x),if\ x\in G,\\ &(2)\ \Vert F\Vert=\Vert f\Vert_G. \end{aligned} (1) F(x)=f(x),if xG,(2) F=fG.
证 对于 ∥ F ∥ = inf ⁡ x ∈ X { C > 0 ∣ ∥ F ( x ) ∥ ≤ C ∥ x ∥ } = sup ⁡ ∥ x ∥ = 1 ∥ F x ∥ , x ∈ X \Vert F\Vert=\inf\limits_{x\in X}\lbrace C>0|\Vert F(x)\Vert\le C\Vert x\Vert\rbrace=\sup\limits_{\Vert x\Vert=1}\Vert Fx\Vert,x\in X F=xXinf{C>0∣∥F(x)Cx}=x=1supFx,xX. ∥ f ∥ G = sup ⁡ x ≠ 0 ∥ f ( x ) ∥ ∥ x ∥ \Vert f\Vert_G=\sup\limits_{x\neq 0}\frac{\Vert f(x)\Vert}{\Vert x\Vert} fG=x=0supxf(x)所以对于$\forall x\in G,\Vert f(x)\Vert\le\Vert f\Vert_G\Vert x\Vert . 从而我们不妨令 .从而我们不妨令 .从而我们不妨令p(x)=\Vert f\Vert_G\Vert x\Vert ,此时即有 ,此时即有 ,此时即有\vert f(x)\vert\le p(x),\forall x\in G$.并且对于
p ( x + y ) = ∥ f ∥ G ∥ x + y ∥ ≤ ∥ f ∥ G ( ∥ x ∥ + ∥ y ∥ ) = p ( x ) + p ( y ) p ( α x ) = ∥ f ∥ G ∥ α x ∥ = ∣ α ∣ p ( x ) . p(x+y)=\Vert f\Vert_G\Vert x+y\Vert\le\Vert f\Vert_G(\Vert x\Vert+\Vert y\Vert)=p(x)+p(y)\\p(\alpha x)=\Vert f\Vert_G\Vert \alpha x\Vert=\vert\alpha\vert p(x). p(x+y)=fGx+yfG(x+y)=p(x)+p(y)p(αx)=fGαx=αp(x).
从而我们可以利用定理2.2 的结论,即存在 X X X上的线性泛函 F ( x ) F(x) F(x),使
F ( x ) = f ( x ) , i f   x ∈ G , F(x)=f(x),if\ x\in G, F(x)=f(x),if xG,

∣ F ( x ) ∣ ≤ p ( x ) , i f   x ∈ X . \vert F(x)\vert\le p(x),if\ x\in X. F(x)p(x),if xX.
从而我们现证 F ( x ) F(x) F(x)是一个连续线性泛函,即证明它是有界线性泛函即可,因为
∣ F ( x ) ∣ ≤ p ( x ) = ∥ f ∥ G ∥ x ∥ , i f   x ∈ X . \vert F(x)\vert\le p(x)=\Vert f\Vert_G\Vert x\Vert,if\ x\in X. F(x)p(x)=fGx,if xX.
从而可知其为连续线性泛函,我们现在只需要证明保范数,首先我们有 ∥ F ∥ ≤ ∥ f ∥ G \Vert F\Vert\le\Vert f\Vert_G FfG,这是显然的.而又因为 F F F f f f的扩张,他的范数不可能比 f f f小,从而我们又有 ∥ F ∥ ≥ ∥ f ∥ G \Vert F\Vert\ge\Vert f\Vert_G FfG.即证保范.

对于定理2.3 ,我们可以理解为扩张是线性流形的连续线性泛函的保范延拓。

现在我们可以得到几个推论:

命题2.1 设 X X X是赋范线性空间,任给非零的 x 0 ∈ X x_0\in X x0X,总存在 X X X上的连续线性泛函 f f f满足
( 1 )   ∥ f ∥ = 1 , ( 2 )   f ( x 0 ) = ∥ x 0 ∥ \begin{aligned} &(1)\ \Vert f\Vert=1,\\ &(2)\ f(x_0)=\Vert x_0\Vert \end{aligned} (1) f=1,(2) f(x0)=x0
证 我们可设KaTeX parse error: Undefined control sequence: \C at position 31: …a x_0:\alpha\in\̲C̲\rbrace.并且定义KaTeX parse error: Undefined control sequence: \C at position 47: …\Vert,\alpha\in\̲C̲.

从而我们可以看出 G G G X X X上的线性流形, f 1 f_1 f1 G G G上的连续线性泛函,并且 ∥ f 1 ∥ G = 1 , f 1 ( x 0 ) = ∥ x 0 ∥ \Vert f_1\Vert_G=1,f_1(x_0)=\Vert x_0\Vert f1G=1f1(x0)=x0,由定理2.3可知,存在 X X X上的连续线性泛函 f f f,使得命题成立.

这个命题我们可以看到任何非零的赋范线性空间都存在一个非零的连续线性泛函.

eg. S [ 0 , 1 ] S[0,1] S[0,1]上没有非零的连续线性泛函.

命题2.2 设 X X X是赋范线性空间, E E E X X X的子空间, x 0 ∈ X ∖ E x_0\in X\setminus E x0XE,则存在 X X X上的有界线性泛函 f f f满足
( 1 )   f ( x ) = 0. i f   x ∈ E , ( 2 )   f ( x 0 ) = 1 ( 3 )   ∥ f ∥ = 1 d d = d i s t ( x 0 , E ) > 0 \begin{aligned} &(1)\ f(x)=0.if\ x\in E,\\ &(2)\ f(x_0)=1\\ &(3)\ \Vert f\Vert=\frac{1}{d} \\&d=dist(x_0,E)>0 \end{aligned} (1) f(x)=0.if xE,(2) f(x0)=1(3) f=d1d=dist(x0,E)>0
d = d i s t ( x 0 , E ) = i n f { d ( x 0 , x ) : x ∈ E } d=dist(x_0,E)=inf\lbrace d(x_0,x):x\in E\rbrace d=dist(x0,E)=inf{d(x0,x):xE}.我们可以类似命题2.1,设KaTeX parse error: Undefined control sequence: \C at position 33: …x_0+x:\alpha\in\̲C̲,X\in E\rbrace.并且定义 f 1 ( α x 0 + x ) = α , i f   α x 0 + x ∈ G f_1(\alpha x_0+x)=\alpha,if\ \alpha x_0+x\in G f1(αx0+x)=α,if αx0+xG.从而我们可以看到 G G G是包含 E E E x 0 x_0 x0的线性流形, f 1 f_1 f1 G G G上的线性泛函.因为对于 ∥ α x 0 + x ∥ = ∣ α ∣ ∥ x ∣ α ∣ + x 0 ∥ ≥ ∣ α ∣ d . \Vert\alpha x_0+x\Vert=\vert\alpha\vert\Vert\frac {x}{\vert \alpha\vert}+x_0\Vert\ge\vert \alpha\vert d. αx0+x=α∣∥αx+x0αd.故有 ∣ f 1 ( α x 0 + x ) ∣ = ∣ α ∣ ≤ ∥ α x 0 + x ∥ d \vert f_1(\alpha x_0+x)\vert=\vert\alpha\vert\le \frac{\Vert\alpha x_0+x\Vert}{d} f1(αx0+x)=αdαx0+x,从而我们可知 f 1 f_1 f1是有界的,故其为连续线性泛函,并由定理2.3可知存在 X X X上的连续线性泛函 f f f ,使得 ∥ f ∥ = ∥ f 1 ∥ G , f ( α x 0 + x ) = f 1 ( α x 0 + x ) , i f   x ∈ G \Vert f\Vert=\Vert f_1\Vert_G,f(\alpha x_0+x)=f_1(\alpha x_0+x),if\ x\in G f=f1G,f(αx0+x)=f1(αx0+x),if xG.我们现在证明 f 1 f_1 f1的范数,因为 ∥ f 1 ∥ G = sup ⁡ d ≠ 0 f 1 ( α x 0 + x ) ∥ α x 0 + x ∥ ≤ ∥ α x 0 + x ∥ d ( ∥ α x 0 + x ∥ ) = 1 d \Vert f_1\Vert_G=\sup\limits_{d\neq 0}\frac{f_1(\alpha x_0+x)}{\Vert \alpha x_0+x\Vert}\le \frac{\Vert\alpha x_0+x\Vert}{d(\Vert\alpha x_0+x\Vert)}=\frac{1}{d} f1G=d=0supαx0+xf1(αx0+x)d(αx0+x)αx0+x=d1,而对于另一方面来说,由于下确界定义,我们可以找到存在一个 x 1 ∈ E , s . t   ∥ x 1 − x 0 ∥ < d + ε , ∀ ε > 0 x_1\in E,s.t\ \Vert x_1-x_0\Vert<d+\varepsilon,\forall \varepsilon>0 x1E,s.t x1x0<d+ε,ε>0.故有对于KaTeX parse error: Undefined control sequence: \C at position 19: …rall \alpha\in \̲C̲. ∥ α x 1 − α x 0 ∥ = ∣ α ∣ ∥ x 1 − x 0 ∥ < ∣ α ∣ ( d + ε ) \Vert \alpha x_1-\alpha x_0\Vert=\vert\alpha\vert\Vert x_1-x_0\Vert<\vert\alpha\vert(d+\varepsilon) αx1αx0=α∣∥x1x0<α(d+ε).从而对于 ∣ f 1 ( α x 0 − α x 1 ) ∣ = ∣ α ∣ ≥ ∥ α x 1 − α x 0 ∥ d + ε \vert f_1(\alpha x_0-\alpha x_1)\vert=\vert\alpha\vert\ge\frac{\Vert \alpha x_1-\alpha x_0\Vert}{d+\varepsilon} f1(αx0αx1)=αd+εαx1αx0.进而有 ∥ f 1 ∥ G = sup ⁡ ∥ f 1 ( α x 0 + x ) ∥ ∥ α x 0 + x ∥ ≥ ∥ α x 1 − α x 0 ∥ ( d + ε ) ( ∥ α x 0 − α x 1 ∥ ) = 1 d + ε \Vert f_1\Vert_G=\sup\frac{\Vert f_1(\alpha x_0+x)\Vert}{\Vert \alpha x_0+x\Vert}\ge\frac{\Vert \alpha x_1-\alpha x_0\Vert}{(d+\varepsilon)(\Vert \alpha x_0-\alpha x_1\Vert)}=\frac{1}{d+\varepsilon} f1G=supαx0+xf1(αx0+x)(d+ε)(αx0αx1)αx1αx0=d+ε1.而我们知道 ε \varepsilon ε是任意大的正数,从而即有 ∥ f 1 ∥ G ≥ 1 d \Vert f_1\Vert_G\ge\frac{1}{d} f1Gd1.综上所述我们即有 ∥ f 1 ∥ G = 1 d \Vert f_1\Vert_G=\frac{1}{d} f1G=d1.即命题得证.

命题2.3 设 M M M是赋范线性空间 X X X中的线性流形, x 0 ∈ X x_0\in X x0X,则 x 0 ∈ M ‾ ⇔ x_0\in \overline{M}\Leftrightarrow x0M X X X上的任何连续线性泛函 f f f,
f ( x ) = 0 , ∀ x ∈ M , 蕴含 f ( x 0 ) = 0 f(x)=0,\forall x\in M,蕴含 f(x_0)=0 f(x)=0,xM,蕴含f(x0)=0
先证必要性:若有 x 0 ∈ M ‾ x_0\in \overline{M} x0M,那么则存在一个 { x n } ⊂ M , s . t   x n → x 0 \lbrace x_n\rbrace\subset M,s.t \ x_n\rightarrow x_0 {xn}M,s.t xnx0.我们可以知道若对于任意 f ( x ) = 0 f(x)=0 f(x)=0,那么则有 lim ⁡ n → ∞ f ( x n ) = f ( lim ⁡ n → ∞ x n ) = f ( x 0 ) \lim\limits_{n\rightarrow \infin}f(x_n)=f(\lim\limits_{n\rightarrow \infin }x_n)=f(x_0) nlimf(xn)=f(nlimxn)=f(x0),从而有 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0.

反过来,我们可以利用反证法,假设 x 0 ∉ M ‾ x_0\notin \overline M x0/M.从而可知 x 0 ∈ X ∖ M ‾ x_0\in X\setminus \overline M x0XM,而我们知道赋范线性空间的子空间的闭包还是赋范线性空间的子空间,从而我们可以根据命题2.2的结论,得到存在一个连续线性泛函 f 2 f_2 f2,
( 1 )   f 2 ( x ) = 0. i f   x ∈ E , ( 2 )   f 2 ( x 0 ) = 1 ( 3 )   ∥ f 2 ∥ = 1 d \begin{aligned}&(1)\ f_2(x)=0.if\ x\in E,\\&(2)\ f_2(x_0)=1\\&(3)\ \Vert f_2\Vert=\frac{1}{d}\\\end{aligned} (1) f2(x)=0.if xE,(2) f2(x0)=1(3) f2=d1
而显然可知矛盾,从而假设不成立.

  • 8
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值