【莫比乌斯反演&类积性函数处理】洛谷P4449 于神之怒加强版 题解

题目

给定T组n,m和一个k,求:

$\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)^k$

思路

考虑对式子化简,考虑枚举$d=gcd(i,j)$,则:

$\sum_{d=1}^{min(n,m)}d^k\: \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d]$

再处理一下gcd,从而套用莫比乌斯反演的结论:

$\sum_{d=1}^{min(n,m)}d^k\: \sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor}[gcd(i,j)=1]$

顺利地套用莫比乌斯反演的结论,即:

$[gcd(i,j)=1]=\sum_{d|gcd(i,j)}\mu (d)$

 则:

$\sum_{d=1}^{min(n,m)}d^k\: \sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor}\sum_{p|gcd(i,j)}\mu (p)$

这里的后半部分就和洛谷P2522 Problem b的推导很相似了,详参本人上一篇题解:【整除分块&莫比乌斯反演】洛谷P2522 Problem b-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_60506105/article/details/136581761

 那么原式又可以进一步化为:

$\sum_{d=1}^{min(n,m)}d^k\: \sum_{p=1}^{min\left ( \left \lfloor \frac{n}{d} \right \rfloor,\left \lfloor \frac{m}{d} \right \rfloor \right )}\mu(p)\left \lfloor \frac{n}{pd} \right \rfloor\left \lfloor \frac{m}{pd} \right \rfloor$

此处已经让人看的头大了,那么换个元吧:

q=pd,则:

$\sum_{d=1}^{min(n,m)}d^k\: \sum_{q=1}^{min(n,m)}\mu\left (\frac{q}{d}\right )\left \lfloor \frac{n}{q} \right \rfloor\left \lfloor \frac{m}{q} \right \rfloor$

再稍微改变一下求和顺序:

$\sum_{q=1}^{min(n,m)}\left \lfloor \frac{n}{q} \right \rfloor\left \lfloor \frac{m}{q} \right \rfloor\sum_{d|q}\mu \left ( \frac{q}{d} \right )d^k$

此时前半部分和上一篇题解一样如法炮制,使用整除分块;后半部分先考虑暴枚。。。

代码实现一下:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll z=5e6+9,mod=1e9+7;
int T,k,n,m;
void fastread()
{
	ios::sync_with_stdio(0);
}
int pw[z],mu[z],p[z],np;
bool isp[z];
ll f[z];
ll qpow(ll x,ll k)
{
	ll res=1ll;
	while(k)
	{
		if(k&1)res=res*x%mod;
		k>>=1;
		x=x*x%mod; 
	}
	return res;
}
void getmu()
{
	memset(isp,1,sizeof(isp));
	isp[1]=0;
	mu[1]=1;
	for(int i=2;i<z;i++)
	{
		if(isp[i])
		{
			p[++np]=i;
			mu[i]=-1;
		}
		for(int j=1;j<=np&&(ll)i*p[j]<z;j++)
		{
			ll x=i*p[j];
			isp[x]=0;
			if(i%p[j]!=0)mu[x]=-mu[i];
			else 
			{
				mu[x]=0;
				break;
			}
		}
	}
	for(ll i=1;i<z;i++)
	pw[i]=qpow(i,k);
	for(ll d=1;d<z;d++)
	for(ll q=d;q<z;q+=d)
	f[q]=(mod+f[q]+mu[q/d]*pw[d]%mod)%mod;
	for(ll i=2;i<z;i++)
	f[i]=(f[i]+f[i-1])%mod;
}
ll cal(ll n,ll m)
{
	ll res=0,rr=min(n,m);
	for(ll l=1,r;l<=rr;l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		ll tmp=(n/l)*(m/l)%mod;
		tmp=((tmp*(f[r]-f[l-1]+mod)%mod+mod)%mod+mod)%mod;
		res+=tmp,res%=mod;
	}
	return res%mod;
}
int main()
{
	fastread();
	cin>>T>>k;
	getmu();
	while(T--)
	{
		cin>>n>>m;
		if(n>m)swap(n,m);
		cout<<cal(n,m)<<endl;
	}
	return 0;
}

你以为这就完了?

可以观察到,在初始化getmu()函数中,暴枚q和d的时间去到了\Theta (nm),这是显然超时的!

因此本题的第二重点:令$f(x)=\sum_{q=1}^{min(n,m)}\left \lfloor \frac{n}{q} \right \rfloor\left \lfloor \frac{m}{q} \right \rfloor\sum_{d|q}\mu \left ( \frac{q}{d} \right )d^k$,就是要线性处理f函数。

若一个积性函数f满足右性质:f(x)可以线性求,且f(x^k)可以线性求并且可以由f(x^{k-1})推出,那么该积性函数可以线性求出。

求法即维护一个lowpow[x]数组,表示x的最小质因子(p)的最大次方数(k),即:

$p^k|x\: \wedge \: p^{k+1}\dagger x$

细节见代码。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll z=5e6+9,mod=1e9+7;
ll T,k,n,m;
void fastread()
{
	ios::sync_with_stdio(0);
}
ll pw[z],mu[z],p[z],np;
bool isp[z];
ll f[z],lowpow[z],xb[z];
ll qpow(ll x,ll k)
{
	ll res=1ll;
	while(k)
	{
		if(k&1)res=res*x%mod;
		k>>=1;
		x=x*x%mod; 
	}
	return res;
}
void getmu()
{
	memset(isp,1,sizeof(isp));
	isp[1]=0;
	mu[1]=1;
	f[1]=xb[1]=1;
	for(ll i=2;i<z;i++)
	{
		if(isp[i])
		{
			p[++np]=i;
			mu[i]=-1;
			lowpow[i]=i;
			f[i]=qpow(i,k)-1;
		}
		for(ll j=1;j<=np&&(ll)i*p[j]<z;j++)
		{
			ll x=i*p[j];
			isp[x]=0;
			if(i%p[j]!=0)
			{
				mu[x]=-mu[i];
				f[x]=f[i]*f[p[j]]%mod;
				lowpow[x]=p[j];
			}
			else 
			{
				mu[x]=0;
				lowpow[x]=lowpow[i]*p[j];
				if(lowpow[i]==i)f[x]=(qpow(x,k)-qpow(i,k)+mod)%mod;
				else f[x]=f[i/lowpow[i]]*f[lowpow[i]*p[j]]%mod;
				break;
			}
		}
		xb[i]=(f[i]+xb[i-1])%mod;
	}
}
ll cal(ll n,ll m)
{
	ll res=0,rr=min(n,m);
	for(ll l=1,r;l<=rr;l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		ll tmp=(n/l)*(m/l)%mod;
		tmp=((tmp*(xb[r]-xb[l-1]+mod)%mod+mod)%mod+mod)%mod;
		res+=tmp,res%=mod;
	}
	return res%mod;
}
int main()
{
	fastread();
	cin>>T>>k;
	getmu();
	while(T--)
	{
		cin>>n>>m;
		if(n>m)swap(n,m);
		cout<<cal(n,m)<<endl;
	}
	return 0;
}

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值