二项式反演 结论+证明

结论

f为带有“钦定”条件的数组,g为带有“恰好”条件的数组,则有二项式反演两个形式

形式一:

$f(n)=\sum_{i=0}^{n}\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i}f(i)$

 形式二:

$f(n)=\sum_{i=n}^{m}\binom{i}{n}g(i)\Leftrightarrow g(n)=\sum_{i=n}^{m}(-1)^{i-n}f(i)$

证明

对于形式一:

等量代换f

$g(n)=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i}\sum_{j=0}^{i}\binom{i}{j}g(j)$

$=\sum_{i=0}^{n}\sum_{j=0}^{i}\binom{n}{i}\binom{i}{j}(-1)^{n-i}g(j)$

改变i和j的枚举顺序:

$=\sum_{j=0}^{n}\sum_{i=j}^{n}\binom{n}{i}\binom{i}{j}(-1)^{n-i}g(j)$

$=\sum_{j=0}^{n}g(j)\sum_{i=j}^{n}\binom{n}{i}\binom{i}{j}(-1)^{n-i}$

在此需要应用一个重要性质:

$\binom{n}{r}\binom{r}{k}=\binom{n}{k}\binom{n-k}{r-k}$

因此:

$=\sum_{j=0}^{n}g(j)\sum_{i=j}^{n}\binom{n}{j}\binom{n-j}{i-j}(-1)^{n-i}$

$=\sum_{j=0}^{n}\binom{n}{j}g(j)\sum_{i=j}^{n}\binom{n-j}{i-j}(-1)^{n-i}$

$=\sum_{j=0}^{n}\binom{n}{j}g(j)\sum_{k=0}^{n-j}\binom{n-j}{k}(-1)^{n-j-k}1^{k}$

$=\sum_{j=0}^{n}\binom{n}{j}g(j)[n=j]$

$=g(n)$

对于形式二:和形式一推导过程类似,请读者自行举一反三

一种可行的推导过程(转载自南海信息学网站,原创作者不详)

R$}6M9$Q6LB}({5OA5C~PLO.png

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值