刷题记录(NC229005 【模板】同余方程)

题目链接

关键点:

1、ax≡1(modb) 可以转换成 ax+by = 1,那么我们要求的x就可以通过扩展欧几里得算法求出

ll gcd(ll a, ll b, ll &x, ll &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll d = gcd(b, a%b, y, x);//x与y的位置互换
    y = y-a/b*x;
    return d;
}

那么那些(a,b)!=1的即为无解的

2、如何保证求出的x为最小整数解,因为x要在mod b的条件下最小,那么就将x一直减去b,找到那个刚刚好为正整数的解即可

x = (x%b+b)%b

完整代码:

# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll t, a, b;
ll gcd(ll a, ll b, ll &x, ll &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll d = gcd(b, a%b, y, x);//x与y的位置互换
    y = y-a/b*x;
    return d;
}
int main()
{
    cin>>t;
    while (t--)
    {
        cin>>a>>b;
        ll x, y;
        ll d = gcd(a, b, x, y);
        if (d != 1)
        {
            cout<<"-1"<<endl;
        }
        else
        {
            cout<<(x%b+b)%b<<endl;
        }
            
    }
    
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值