NC19246 数据结构
题目链接
关键点:
1、如何处理乘法以及计算平方和
2、首先分析对于区间内每个数+k,对区间平方和的影响:
∑(xi+k)² = ∑xi² + 2*k*∑xi + ∑k²
因此我们只要将该区间的平方和 += 该区间的和*2*k + 该区间长度*k
tree2[p] += 2*tree1[p]*num + num*num*(r-l+1);
对于乘k对于区间和、区间平方和影响
区间和*k = ∑每个元素*k,因此区间和直接乘k即可
区间平方和*k² = ∑(每个元素*k)²,因此区间平方和直接乘k²即可
3、两个标记,lazy1表示加,lazy2表示乘,如何Pushdown
首先对于两个标记是先加还是先乘很难搞清,统一设为(xi+p1)*p2的形式,即lazy1要随着lazy2更新,每次对该区间进行乘操作时,lazy1也跟着*k,
lazy1[p] *= num;
lazy2[p] *=num;
这时进行pushdown:
先更新标记:
lazy1[p*2] += lazy1[p];
lazy1[p*2+1] += lazy1[p];
lazy2[p*2] *= lazy2[p];
lazy2[p*2+1] *= lazy2[p];
∑((xi+p1)*p2)² = ∑xi² * p2² + 2 * p2² * p1 * ∑xi + ∑p2² * p1²
又因为p1即lazy1标记随着lazy2(p2)标记实时更新,因此此时lazy1[p] = p1*p2;
说明:∑xi为区间和
tree2[p*2] *= lazy2[p]*lazy2[p];
tree2[p*2] += 2*tree1[p*2]*lazy1[p]*lazy2[p] + lazy1[p]*lazy1[p]*(mid-l+1);
tree2[p*2+1] *= lazy2[p]*lazy2[p];
tree2[p*2+1] += 2*tree1[p*2+1]*lazy1[p]*lazy2[p] + lazy1[p]*lazy1[p]*(r-(mid+1)+1);
同样的分析对于区间和
∑((xi+p1)*p2) = ∑xi * p2 + 2*∑p2 * p1
tree1[p*2] *= lazy2[p];
tree1[p*2] += (mid-l+1)*lazy1[p];
tree1[p*2+1] *= lazy2[p];
tree1[p*2+1] += (r-(mid+1)+1)*lazy1[p];
注意这里两个区间的更新不可以调换,因为区间平方和要利用区间和,因此区间平方和要先计算,如果调换,那么就会重复计算
完整代码:
# include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 10000+10;
int n, m;
ll a[N];
ll tree1[N*4], tree2[N*4], lazy1[N*4], lazy2[N*4];
void build(int p, int l, int r)
{
if (l == r)
{
tree1[p] = a[l];
tree2[p] = a[l]*a[l];
return ;
}
int mid = (l+r)/2;
build(2*p, l, mid);
build(2*p+1, mid+1, r);
tree1[p] = tree1[p*2] + tree1[p*2+1];
tree2[p] = tree2[p*2] + tree2[p*2+1];
}
void pushdown(int p, int l, int r)
{
lazy1[p*2] += lazy1[p];
lazy1[p*2+1] += lazy1[p];
lazy2[p*2] *= lazy2[p];
lazy2[p*2+1] *= lazy2[p];
int mid = (l+r)/2;
tree2[p*2] *= lazy2[p]*lazy2[p];
tree2[p*2] += 2*tree1[p*2]*lazy1[p]*lazy2[p] + lazy1[p]*lazy1[p]*(mid-l+1);
tree2[p*2+1] *= lazy2[p]*lazy2[p];
tree2[p*2+1] += 2*tree1[p*2+1]*lazy1[p]*lazy2[p] + lazy1[p]*lazy1[p]*(r-(mid+1)+1);
tree1[p*2] *= lazy2[p];
tree1[p*2] += (mid-l+1)*lazy1[p];
tree1[p*2+1] *= lazy2[p];
tree1[p*2+1] += (r-(mid+1)+1)*lazy1[p];
lazy1[p] = 0;
lazy2[p] = 1;
}
void change1(int p, int l, int r, int x, int y, ll num)//+num
{
if (x<=l && y>=r)
{
tree2[p] += 2*tree1[p]*num + num*num*(r-l+1);
tree1[p] += num*(r-l+1);
lazy1[p] += num;
return ;
}
if (lazy1[p]!=0 || lazy2[p]!=1)
pushdown(p, l, r);
int mid = (l+r)/2;
if (x<=mid) change1(2*p, l, mid, x, y, num);
if (y>mid) change1(2*p+1, mid+1, r, x, y, num);
tree1[p] = tree1[p*2] + tree1[p*2+1];
tree2[p] = tree2[p*2] + tree2[p*2+1];
}
void change2(int p, int l, int r, int x, int y, ll num)//*num
{
if (x<=l && y>=r)
{
tree2[p] *= num*num;
tree1[p] *= num;//单个影响
lazy1[p] *= num;
lazy2[p] *=num;
return ;
}
if (lazy1[p]!=0 || lazy2[p]!=1)
pushdown(p, l, r);
int mid = (l+r)/2;
if (x<=mid) change2(2*p, l, mid, x, y, num);
if (y>mid) change2(2*p+1, mid+1, r, x, y, num);
tree1[p] = tree1[p*2] + tree1[p*2+1];
tree2[p] = tree2[p*2] + tree2[p*2+1];
}
ll cal1(int p, int l, int r, int x, int y)//求和
{
if (x<=l && y>=r) return tree1[p];
if (lazy1[p]!=0 || lazy2[p]!=1)
pushdown(p, l, r);
int mid = (l+r)/2;
// ll ans = 0;
// if (x<=mid) ans += cal1(2*p, l, mid, x, y);
// if (y>mid) ans += cal1(2*p+1, mid+1, r, x, y);
// return ans;
if (y<=mid) return cal1(2*p, l, mid, x, y);
if (x>mid) return cal1(2*p+1, mid+1, r, x, y);
return cal1(2*p, l, mid, x, mid) + cal1(2*p+1, mid+1, r, mid+1, y);
}
ll cal2(int p, int l, int r, int x, int y)//求平方和
{
if (x<=l && y>=r) return tree2[p];
if (lazy1[p]!=0 || lazy2[p]!=1)
pushdown(p, l, r);
int mid = (l+r)/2;
// ll ans = 0;
// if (x<=mid) ans += cal2(2*p, l, mid, x, y);
// if (y>mid) ans += cal2(2*p+1, mid+1, r, x, y);
// return ans;
if (y<=mid) return cal2(2*p, l, mid, x, y);
if (x>mid) return cal2(2*p+1, mid+1, r, x, y);
return cal2(2*p, l, mid, x, mid) + cal2(2*p+1, mid+1, r, mid+1, y);
}
int main()
{
for (int i=0; i<N*4; i++)
lazy2[i] = 1;
memset(lazy1, 0, sizeof(lazy1));
cin>>n>>m;
for (int i=1; i<=n; i++)
cin>>a[i];
build(1, 1, n);
for (int i=1; i<=m; i++)
{
int q;
cin>>q;
if (q == 1)
{
int l, r;
cin>>l>>r;
cout<<cal1(1, 1, n, l, r)<<endl;
}
if (q == 2)
{
int l, r;
cin>>l>>r;
cout<<cal2(1, 1, n, l, r)<<endl;
}
if (q == 3)
{
int l, r;
ll x;
cin>>l>>r>>x;
change2(1, 1, n, l, r, x);
}
if (q == 4)
{
int l, r;
ll x;
cin>>l>>r>>x;
change1(1, 1, n, l, r, x);
}
}
return 0;
}