4700. 何以包邮?(简单的dp & 01背包思想)

题目如下:

在这里插入图片描述


输入样例1:

4 100
20
90
60
60

输出样例1:

110

样例1解释
购买前两本书 (20+90) 即可包邮且花费最小。

输入样例2:

3 30
15
40
30

输出样例2:

30

样例2解释
仅购买第三本书恰好可以满足包邮条件。

输入样例3:

2 90
50
50

输出样例3:

100

样例3解释
必须全部购买才能包邮。


题解 or 思路:

看题意 + 数据量 显然是一道金典的 动态规划问题

状态定义:

d p [ x ] dp[x] dp[x]
如果 d p [ x ] = 1 dp[x] = 1 dp[x]=1 代表我们可以凑出来 x x x
如果 d p [ x ] = 0 dp[x] = 0 dp[x]=0 代表我们不能凑出来 x x x

转移方程

d p [ j ]   ∣ = d p [ j − a [ i ] ] dp[j]\ |= dp[j - a[i]] dp[j] =dp[ja[i]]

查找答案时,就从 x x x s u m sum sum 查询是否可以构造出来就行,第一个可以构造出来的就是最优答案!

AC 代码如下:

#define buff                     \
    ios::sync_with_stdio(false); \
    cin.tie(0);
const int N = 300009;
int n, x, a[35], dp[N];
void solve()
{
    cin >> n >> x;
    int sum = 0;
    for (int i = 1; i <= n; i++)
        cin >> a[i], sum += a[i];
    dp[0] = 1;
    for (int i = 1; i <= n; i++)
        for (int j = sum; j >= a[i]; j--)
            dp[j] |= dp[j - a[i]];
    for (int i = x; i <= sum; i++)
    {
        if (dp[i])
        {
            cout << i << '\n';
            return;
        }
    }
}
int main()
{
    buff;
    solve();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Joanh_Lan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值