if(node.getLchild() == null){
return node;
}else{
return getMinData(node.getLchild());
}
}
//得到数据域为data的结点的直接父节点parentNode
public TreeNode getParentNode(TreeNode root, Integer data){
TreeNode parentNode = root;
if(parentNode.getData() == data){ //根节点的父节点返回为null
return null;
}
while(parentNode != null){
//查找当前节点的父节点的左右子节点,若是相等,则返回该父节点
if((parentNode.getLchild() != null && parentNode.getLchild().getData() == data) ||
(parentNode.getRchild() != null && parentNode.getRchild().getData() == data)){
return parentNode;
}else{
if(parentNode.getData() > data){ //向左查找父节点
parentNode = parentNode.getLchild();
}else{
parentNode = parentNode.getRchild(); //向右查找父节点
}
}
}
return null;
}
/**
-
得到结点node的直接前趋
-
a.该节点左子树不为空:其前驱节点为其左子树的最大元素
-
b.该节点左子树为空: 其前驱节点为其祖先节点(递归),且该祖先节点的右孩子也为其祖先节点
-
(就是一直往其parent找,出现左拐后的那个祖先节点)
*/
public TreeNode getPrecessor(TreeNode root,TreeNode node){
if(node == null){
return null;
}
//a.该节点左子树不为空:其前驱节点为其左子树的最大元素
if(node.getLchild() != null){
return getMaxData(node.getLchild());
}else{ //b.该节点左子树为空: 其前驱节点为其祖先节点(递归)
TreeNode parentNode = getParentNode(root, node.getData());
while(parentNode != null && node == parentNode.getLchild()){
node = parentNode;
parentNode = getParentNode(root, parentNode.getData());
}
return parentNode;
}
}
/**
-
得到结点node的直接后继(后继节点就是比要删除的节点的关键值要大的节点集合中的最小值)
-
a.该节点右子树不为空,其后继节点为其右子树的最小元素
-
b.该节点右子树为空,则其后继节点为其祖先节点(递归),且此祖先节点的左孩子也是该节点的祖先节点,
-
就是说一直往上找其祖先节点,直到出现右拐后的那个祖先节点:
*/
public TreeNode getSuccessor(TreeNode root,TreeNode node){
if(node == null){
return null;
}
//a.该节点右子树不为空,其后继节点为其右子树的最小元素
if(node.getRchild() != null){
return getMinData(node.getRchild());
}else{ //b.该节点右子树为空,则其后继节点为其最高祖先节点(递归)
TreeNode parentNode = getParentNode(root, node.getData());
while(parentNode != null && node == parentNode.getRchild()){
node = parentNode;
parentNode = getParentNode(root, parentNode.getData());
}
return parentNode;
}
}
/**
- 删除数据域为dat 需要zi料+ 绿色徽【vip1024b】
a的结点
-
按三种情况处理:
-
a.如果被删除结点z是叶子节点,则直接删除,不会破坏二叉查找树的性质
-
b.如果节点z只有一颗左子树或右子树,则让z的子树成为z父节点的子树,代替z的位置
-
c.若结点z有左、右两颗子树,则令z的直接后继(或直接前驱)替代z,
-
然后从二叉查找树中删去这个直接后继(或直接前驱),这样就转换为第一或第二种情况
-
@param node 二叉查找树的根节点
-
@param data 需要删除的结点的数据域
-
@return
*/
public boolean deleteNode(TreeNode node, Integer data){
if(node == null){ //树为空
throw new RuntimeException(“树为空!”);
}
TreeNode delNode= searchNode(node, data); //搜索需要删除的结点
TreeNode parent = null;
if(delNode == null){ //如果树中不存在要删除的关键字
throw new RuntimeException(“树中不存在要删除的关键字!”);
}else{
parent = getParentNode(node,data); //得到删除节点的直接父节点
//a.如果被删除结点z是叶子节点,则直接删除,不会破坏二叉查找树的性质
if(delNode.getLchild()==null && delNode.getRchild()==null){
if(delNode==parent.getLchild()){ //被删除节点为其父节点的左孩子
parent.setLchild(null);
}else{ //被删除节点为其父节点的右孩子
parent.setRchild(null);
}
return true;
}
//b1.如果节点z只有一颗左子树,则让z的子树成为z父节点的子树,代替z的位置
if(delNode.getLchild()!=null && delNode.getRchild()==null){
if(delNode==parent.getLchild()){ //被删除节点为其父节点的左孩子
parent.setLchild(delNode.getLchild());
}else{ //被删除节点为其父节点的右孩子
parent.setRchild(delNode.getLchild());
}
delNode.setLchild(null); //设置被删除结点的左孩子为null
return true;
}
//b2.如果节点z只有一颗右子树,则让z的子树成为z父节点的子树,代替z的位置
if(delNode.getLchild()==null && delNode.getRchild()!=null){
if(delNode==parent.getLchild()){ //被删除节点为其父节点的左孩子
parent.setLchild(delNode.getRchild());
}else{ //被删除节点为其父节点的右孩子
parent.setRchild(delNode.getRchild());
}
delNode.setRchild(null); //设置被删除结点的右孩子为null
return true;
}
//c.若结点z有左、右两颗子树,则删除该结点的后继结点,并用该后继结点取代该结点
if(delNode.getLchild()!=null && delNode.getRchild()!=null){
TreeNode successorNode = getSuccessor(node,delNode); //得到被删除结点的后继节点
deleteNode(node,successorNode.getData()); //删除该结点的后继结点
delNode.setData(successorNode.getData()); //用该后继结点取代该结点
return true;
}
}
return false;
}
public static void main(String args[]){
Scanner input = new Scanner(System.in);
Integer[] array = {8,3,10,1,6,14,4,7,13};
BinarySearchTree bst = new BinarySearchTree();
TreeNode root = bst.buildBST(array);
System.out.print(“层次遍历:”);
bst.levelOrder(root);
System.out.print(“\n”+“中序遍历:”);
bst.inOrder(root);
System.out.println();
System.out.print(“得到最大值:”);
System.out.println(bst.getMaxData(root).getData());
System.out.print(“得到最小值:”);
System.out.println(bst.getMinData(root).getData());
System.out.print(“向二叉查找树中插入一个节点,请输入需插入节点的数据域:”);
int data = input.nextInt();
System.out.print(“插入节点”+ data +“后,中序遍历的结果:”);
root = bst.insertNode(root, data);
bst.inOrder(root);
System.out.println(“\n”+“在二叉查找树中查找元素,”+“请输入需要查找的结点值:”);
data = input.nextInt();
if(bst.searchNode(root, data) == null){
System.out.println(“false”);
}else{
System.out.println(“true”);
}
System.out.println(“查找节点的直接父节点,”+“请输入需要查找的结点值:”);
data = input.nextInt();
System.out.print(“节点”+ data +“的父节点是:”);
if(bst.getParentNode(root, data) == null){
最后
现在其实从大厂招聘需求可见,在招聘要求上有高并发经验优先,包括很多朋友之前都是做传统行业或者外包项目,一直在小公司,技术搞的比较简单,没有怎么搞过分布式系统,但是现在互联网公司一般都是做分布式系统。
所以说,如果你想进大厂,想脱离传统行业,这些技术知识都是你必备的,下面自己手打了一份Java并发体系思维导图,希望对你有所帮助。
data = input.nextInt();
System.out.print(“节点”+ data +“的父节点是:”);
if(bst.getParentNode(root, data) == null){
最后
现在其实从大厂招聘需求可见,在招聘要求上有高并发经验优先,包括很多朋友之前都是做传统行业或者外包项目,一直在小公司,技术搞的比较简单,没有怎么搞过分布式系统,但是现在互联网公司一般都是做分布式系统。
所以说,如果你想进大厂,想脱离传统行业,这些技术知识都是你必备的,下面自己手打了一份Java并发体系思维导图,希望对你有所帮助。
[外链图片转存中…(img-edKm4f21-1710355197232)]