Java实现链式存储的二叉查找树(递归方法)

if(node.getLchild() == null){

return node;

}else{

return getMinData(node.getLchild());

}

}

//得到数据域为data的结点的直接父节点parentNode

public TreeNode getParentNode(TreeNode root, Integer data){

TreeNode parentNode = root;

if(parentNode.getData() == data){ //根节点的父节点返回为null

return null;

}

while(parentNode != null){

//查找当前节点的父节点的左右子节点,若是相等,则返回该父节点

if((parentNode.getLchild() != null && parentNode.getLchild().getData() == data) ||

(parentNode.getRchild() != null && parentNode.getRchild().getData() == data)){

return parentNode;

}else{

if(parentNode.getData() > data){ //向左查找父节点

parentNode = parentNode.getLchild();

}else{

parentNode = parentNode.getRchild(); //向右查找父节点

}

}

}

return null;

}

/**

  • 得到结点node的直接前趋

  • a.该节点左子树不为空:其前驱节点为其左子树的最大元素

  • b.该节点左子树为空: 其前驱节点为其祖先节点(递归),且该祖先节点的右孩子也为其祖先节点

  • (就是一直往其parent找,出现左拐后的那个祖先节点)

*/

public TreeNode getPrecessor(TreeNode root,TreeNode node){

if(node == null){

return null;

}

//a.该节点左子树不为空:其前驱节点为其左子树的最大元素

if(node.getLchild() != null){

return getMaxData(node.getLchild());

}else{ //b.该节点左子树为空: 其前驱节点为其祖先节点(递归)

TreeNode parentNode = getParentNode(root, node.getData());

while(parentNode != null && node == parentNode.getLchild()){

node = parentNode;

parentNode = getParentNode(root, parentNode.getData());

}

return parentNode;

}

}

/**

  • 得到结点node的直接后继(后继节点就是比要删除的节点的关键值要大的节点集合中的最小值)

  • a.该节点右子树不为空,其后继节点为其右子树的最小元素

  • b.该节点右子树为空,则其后继节点为其祖先节点(递归),且此祖先节点的左孩子也是该节点的祖先节点,

  • 就是说一直往上找其祖先节点,直到出现右拐后的那个祖先节点:

*/

public TreeNode getSuccessor(TreeNode root,TreeNode node){

if(node == null){

return null;

}

//a.该节点右子树不为空,其后继节点为其右子树的最小元素

if(node.getRchild() != null){

return getMinData(node.getRchild());

}else{ //b.该节点右子树为空,则其后继节点为其最高祖先节点(递归)

TreeNode parentNode = getParentNode(root, node.getData());

while(parentNode != null && node == parentNode.getRchild()){

node = parentNode;

parentNode = getParentNode(root, parentNode.getData());

}

return parentNode;

}

}

/**

  • 删除数据域为dat 需要zi料+ 绿色徽【vip1024b】

a的结点

  • 按三种情况处理:

  • a.如果被删除结点z是叶子节点,则直接删除,不会破坏二叉查找树的性质

  • b.如果节点z只有一颗左子树或右子树,则让z的子树成为z父节点的子树,代替z的位置

  • c.若结点z有左、右两颗子树,则令z的直接后继(或直接前驱)替代z,

  • 然后从二叉查找树中删去这个直接后继(或直接前驱),这样就转换为第一或第二种情况

  • @param node 二叉查找树的根节点

  • @param data 需要删除的结点的数据域

  • @return

*/

public boolean deleteNode(TreeNode node, Integer data){

if(node == null){ //树为空

throw new RuntimeException(“树为空!”);

}

TreeNode delNode= searchNode(node, data); //搜索需要删除的结点

TreeNode parent = null;

if(delNode == null){ //如果树中不存在要删除的关键字

throw new RuntimeException(“树中不存在要删除的关键字!”);

}else{

parent = getParentNode(node,data); //得到删除节点的直接父节点

//a.如果被删除结点z是叶子节点,则直接删除,不会破坏二叉查找树的性质

if(delNode.getLchild()==null && delNode.getRchild()==null){

if(delNode==parent.getLchild()){ //被删除节点为其父节点的左孩子

parent.setLchild(null);

}else{ //被删除节点为其父节点的右孩子

parent.setRchild(null);

}

return true;

}

//b1.如果节点z只有一颗左子树,则让z的子树成为z父节点的子树,代替z的位置

if(delNode.getLchild()!=null && delNode.getRchild()==null){

if(delNode==parent.getLchild()){ //被删除节点为其父节点的左孩子

parent.setLchild(delNode.getLchild());

}else{ //被删除节点为其父节点的右孩子

parent.setRchild(delNode.getLchild());

}

delNode.setLchild(null); //设置被删除结点的左孩子为null

return true;

}

//b2.如果节点z只有一颗右子树,则让z的子树成为z父节点的子树,代替z的位置

if(delNode.getLchild()==null && delNode.getRchild()!=null){

if(delNode==parent.getLchild()){ //被删除节点为其父节点的左孩子

parent.setLchild(delNode.getRchild());

}else{ //被删除节点为其父节点的右孩子

parent.setRchild(delNode.getRchild());

}

delNode.setRchild(null); //设置被删除结点的右孩子为null

return true;

}

//c.若结点z有左、右两颗子树,则删除该结点的后继结点,并用该后继结点取代该结点

if(delNode.getLchild()!=null && delNode.getRchild()!=null){

TreeNode successorNode = getSuccessor(node,delNode); //得到被删除结点的后继节点

deleteNode(node,successorNode.getData()); //删除该结点的后继结点

delNode.setData(successorNode.getData()); //用该后继结点取代该结点

return true;

}

}

return false;

}

public static void main(String args[]){

Scanner input = new Scanner(System.in);

Integer[] array = {8,3,10,1,6,14,4,7,13};

BinarySearchTree bst = new BinarySearchTree();

TreeNode root = bst.buildBST(array);

System.out.print(“层次遍历:”);

bst.levelOrder(root);

System.out.print(“\n”+“中序遍历:”);

bst.inOrder(root);

System.out.println();

System.out.print(“得到最大值:”);

System.out.println(bst.getMaxData(root).getData());

System.out.print(“得到最小值:”);

System.out.println(bst.getMinData(root).getData());

System.out.print(“向二叉查找树中插入一个节点,请输入需插入节点的数据域:”);

int data = input.nextInt();

System.out.print(“插入节点”+ data +“后,中序遍历的结果:”);

root = bst.insertNode(root, data);

bst.inOrder(root);

System.out.println(“\n”+“在二叉查找树中查找元素,”+“请输入需要查找的结点值:”);

data = input.nextInt();

if(bst.searchNode(root, data) == null){

System.out.println(“false”);

}else{

System.out.println(“true”);

}

System.out.println(“查找节点的直接父节点,”+“请输入需要查找的结点值:”);

data = input.nextInt();

System.out.print(“节点”+ data +“的父节点是:”);

if(bst.getParentNode(root, data) == null){

最后

现在其实从大厂招聘需求可见,在招聘要求上有高并发经验优先,包括很多朋友之前都是做传统行业或者外包项目,一直在小公司,技术搞的比较简单,没有怎么搞过分布式系统,但是现在互联网公司一般都是做分布式系统。

所以说,如果你想进大厂,想脱离传统行业,这些技术知识都是你必备的,下面自己手打了一份Java并发体系思维导图,希望对你有所帮助。

data = input.nextInt();

System.out.print(“节点”+ data +“的父节点是:”);

if(bst.getParentNode(root, data) == null){

最后

现在其实从大厂招聘需求可见,在招聘要求上有高并发经验优先,包括很多朋友之前都是做传统行业或者外包项目,一直在小公司,技术搞的比较简单,没有怎么搞过分布式系统,但是现在互联网公司一般都是做分布式系统。

所以说,如果你想进大厂,想脱离传统行业,这些技术知识都是你必备的,下面自己手打了一份Java并发体系思维导图,希望对你有所帮助。

[外链图片转存中…(img-edKm4f21-1710355197232)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值