决策树的基本原理--学习于实验楼,你的技术真的到天花板了吗

本文介绍了决策树构建中特征选择的重要性,特别是信息增益和信息增益比的应用。讨论了ID3和C4.5算法,以及它们如何通过信息论测量特征重要性。同时,提到了过拟合问题及其通过决策树修剪的解决策略,以及与前端开发技能提升相关的内容。
摘要由CSDN通过智能技术生成

特征选择是建立决策树之前的十分重要的一步。如果是随机的选择特征,那么所建立决策树的学习效率就会大打折扣。举例:银行采用决策树来解决信用卡审批问题,判断是否向某人发放信用卡可以根据其年龄,工作单位,是否有不动产,历史信贷情况等特征决定。而选择不同的特征,后续生成的决策树就会不一致,这种不一致最终会影响到决策树的分类效率。

通常我们在选择特征的时, 会考虑到两种不同的指标,分别为:信息增益和信息增益比。这里就要谈到信息论中的另一个常见的名词:熵。

熵(Entropy)是表示随机变量不确定性的度量。简单来说:熵越大,随机变量的不确定性就越大,而特征A对于某一训练集D的信息增益g(D,A)定义为集合D的熵H(D)与特征A在给定条件下D的熵的(H|A)之差。

g(D,A)=H(D)-H(D|A)

简单来讲,每一个特征针对训练数据集的前后信息变化的影响是不一样的,信息增益越大,即代表这种影响越大,而影响越大,就表明该特征更加重要。

生成算法

决策树的生成算法最经典的就数 John Ross Quinlan 提出的 ID3 算法,这个算法的核心理论即源于上面提到的信息增益。

ID3 算法通过递归的方式建立决策树。建立时,从根节点开始,对节点计算每个独立特征的信息增益,选择信息增益最大的特征作为节点特征。接下来,对该特征施加判断条件,建立子节点。然后针对子节点再此使用信息增益进行判断,直到所有特征的信息增益很小或者没有特征时结束,这样就逐步建立一颗完整的决策树。

除了从信息增益演化而来的 ID3 算法,还有一种常见的算法叫 C4.5。C4.5 算法同样由 John Ross Quinlan 发明,但它使用了信息增益比来选择特征,这被看成是 ID3 算法的一种改进。

ID3 和 C4.5 算法简单高效,但是他俩均存在一个缺点,那就是用 “完美去造就了另一个不完美”。这两个算法从信息增益和信息增益比开始,对整个训练集进行的分类,拟合出来的模型针对该训练集的确是非常完美的。但是,这种完美就使得整体模型的复杂度较高,而对其他数据集的预测能力就降低了,也就是我们常说的过拟合而使得模型的泛化能力变弱。

当然,过拟合的问题也是可以解决的,那就是对决策树进行修剪。

决策树修剪

决策树的修剪,其实就是通过优化损失函数来去掉不必要的一些分类特征,降低模型的整体复杂度。修剪的方式,就是从树的叶节点出发,向上回缩,逐步判断。如果去掉某一特征后,整棵决策树所对应的损失函数更小,那就就将该特征及带有的分支剪掉。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数前端工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注前端)
img

最后

中年危机是真实存在的,即便有技术傍身,还是难免对自己的生存能力产生质疑和焦虑,这些年职业发展,一直在寻求消除焦虑的依靠。

  • 技术要深入到什么程度?

  • 做久了技术总要转型管理?

  • 我能做什么,我想做什么?

  • 一技之长,就是深耕你的专业技能,你的专业技术。(重点)

  • 独立做事,当你的一技之长达到一定深度的时候,需要开始思考如何独立做事。(创业)

  • 拥有事业,选择一份使命,带领团队实现它。(创业)

一技之长分五个层次

  • 栈内技术 - 是指你的前端专业领域技术

  • 栈外技术 - 是指栈内技术的上下游,领域外的相关专业知识

  • 工程经验 - 是建设专业技术体系的“解决方案”

  • 带人做事 - 是对团队协作能力的要求

  • 业界发声 - 工作经验总结对外分享,与他人交流

永远不要放弃一技之长,它值得你长期信仰持有

CodeChina开源项目:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

主要内容包括html,css,html5,css3,JavaScript,正则表达式,函数,BOM,DOM,jQuery,AJAX,vue 等等。


M,DOM,jQuery,AJAX,vue 等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值