做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
from sklearn.metrics import confusion_matrix
import pandas as pd
设置设备
device = torch.device(“cuda:0” if torch.cuda.is_available() else “cpu”)
定义数据增强
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
加载数据集
data_path = “path/to/dataset”
dataset = datasets.ImageFolder(root=data_path, transform=transform)
加载模型
model_path = “path/to/model.pth”
model = torch.load(model_path)
model.to(device)
model.eval()
获取预测结果和标签
labels = []
preds = []
for inputs, targets in dataset:
inputs = inputs.unsqueeze(0).to(device)
targets = targets.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
labels.append(targets.item())
preds.append(predicted.item())
生成混淆矩阵
cm = confusion_matrix(labels, preds)
classes = dataset.classes
cm_df = pd.DataFrame(cm, index=classes, columns=classes)
保存为CSV文件
cm_df.to_csv(“confusion_matrix.csv”)
print(“Confusion matrix saved as confusion_matrix.csv”)
####
####
#### 非 ImageNet数据格式,定义导入数据的类名和方法!!!!
导入数据的类和函数定义代码:
import os
import numpy as np
import torch
from torch.utils.data import Dataset
from torchvision import transforms
from PIL import Image
class CustomDataset(Dataset):
def init(self, data_dir, transform=None):
self.data_dir = data_dir
self.transform = transform
self.img_files = os.listdir(data_dir)
def __len__(self):
return len(self.img_files)
def __getitem__(self, index):
img_path = os.path.join(self.data_dir, self.img_files[index])
img = Image.open(img_path).convert('RGB')
label = self.get_label_from_filename(self.img_files[index])
if self.transform:
img = self.transform(img)
return img, label
def get_label_from_filename(self, filename):
label = filename.split('.')[0] # 假设文件名为"label.image_id.jpg"格式
label = label.split('_')[0] # 仅保留label信息
return int(label)
加载数据集并进行预处理
data_dir = “your_data_dir”
transform = transforms.Compose([
transforms.Resize((224, 224)), # 图像大小调整为224x224
transforms.ToTensor(), # 将图像转换为Tensor格式,并将像素值缩放到[0, 1]
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 图像标准化
])
dataset = CustomDataset(data_dir, transform=transform)
#### 非imageNet数据格式,完成生成混淆矩阵程序代码!!!!
注意点:
1.自定义数据通过 “\_” 来进行获取图片的类别 label 标签值,所以你的命名中是否包含了标签值,如果没有标签值,还是需要自行修改的,当然有的话,也需要思考一下,标签值放置的位置在spilt后列表的那个位置!
2.对了,那个后面部分需要缩进,哈哈,python代码简洁,但缩进问题就很抽象,从
model = torch.load('model.pth') 开始直接缩进!!!
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from sklearn.metrics import confusion_matrix
import pandas as pd
import numpy as np
自定义数据集类
class MyDataset(torch.utils.data.Dataset):
def init(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.img_list = os.listdir(root_dir)
def __len__(self):
return len(self.img_list)
现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。
分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!