最后
不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~
给大家准备的学习资料包括但不限于:
Python 环境、pycharm编辑器/永久激活/翻译插件
python 零基础视频教程
Python 界面开发实战教程
Python 爬虫实战教程
Python 数据分析实战教程
python 游戏开发实战教程
Python 电子书100本
Python 学习路线规划
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
以下是使用OpenCV对视频帧进行处理的示例代码:
import cv2
# 打开视频文件
cap = cv2.VideoCapture('video.mp4')
while cap.isOpened():
# 逐帧读取视频
ret, frame = cap.read()
# 如果视频读取成功
if ret:
# 在窗口中显示原始视频帧
cv2.imshow('Original Frame', frame)
# 进行视频帧处理,例如图像滤波、边缘检测等
processed_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 在窗口中显示处理后的视频帧
cv2.imshow('Processed Frame', processed_frame)
# 按下 'q' 键退出循环
if cv2.waitKey(25) & 0xFF == ord('q'):
break
else:
break
# 释放视频资源
cap.release()
# 关闭窗口
cv2.destroyAllWindows()
在这个示例中,我们首先使用cv2.VideoCapture
函数打开视频文件。
然后,我们进入一个循环,使用cap.read()
逐帧读取视频。函数返回值ret
表示读取是否成功,frame
是读取到的视频帧。
接着,我们可以在窗口中显示原始视频帧,使用cv2.imshow('Original Frame', frame)
。
然后,我们进行视频帧处理,例如将彩色帧转换为灰度帧,使用cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
。
最后,我们可以在窗口中显示处理后的视频帧,使用cv2.imshow('Processed Frame', processed_frame)
。
在循环中,我们还检查按键事件,如果按下了键盘上的 ‘q’ 键,就退出循环。
最后,我们释放视频资源,使用cap.release()
函数,关闭窗口,使用cv2.destroyAllWindows()
函数。
通过这段代码,你可以打开并读取视频文件的每一帧,并对每一帧进行处理,如图像滤波、边缘检测等。你可以根据需要进行各种图像处理操作,并在窗口中显示原始视频帧和处理后的视频帧。
- 目标检测与跟踪示例代码
以下是使用OpenCV进行目标检测和跟踪的示例代码:
import cv2
# 加载预训练的目标检测模型和跟踪器
net = cv2.dnn.readNetFromCaffe('deploy.prototxt', 'res10\_300x300\_ssd\_iter\_140000.caffemodel')
tracker = cv2.TrackerCSRT_create()
# 打开摄像头
cap = cv2.VideoCapture(0)
# 选择要跟踪的目标
ret, frame = cap.read()
bbox = cv2.selectROI('Select Target', frame)
tracker.init(frame, bbox)
while True:
# 逐帧捕捉视频
ret, frame = cap.read()
if ret:
# 对当前帧进行目标检测
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
net.setInput(blob)
detections = net.forward()
# 获取检测到的目标框
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.5:
box = detections[0, 0, i, 3:7] \* np.array([frame.shape[1], frame.shape[0], frame.shape[1], frame.shape[0]])
(startX, startY, endX, endY) = box.astype("int")
# 在图像中绘制目标框
cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2)
# 更新跟踪器
ret, bbox = tracker.update(frame)
if ret:
# 在图像中绘制跟踪框
(x, y, w, h) = [int(v) for v in bbox]
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2)
# 显示视频帧
cv2.imshow('Object Detection and Tracking', frame)
# 按下 'q' 键退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头资源
cap.release()
# 关闭窗口
cv2.destroyAllWindows()
在这个示例中,我们首先加载预训练的目标检测模型和跟踪器。net
使用了基于SSD的Caffe模型进行目标检测,tracker
使用了CSRT算法进行目标跟踪。你需要提前下载并指定相应的模型文件。
然后,我们打开摄像头,并选择要跟踪的目标。通过cv2.selectROI
函数在窗口中选择一个感兴趣的区域作为目标框,并使用tracker.init
方法初始化跟踪器。
接着,我们进入一个循环,逐帧捕捉视频。对于每一帧,我们首先使用目标检测模型对当前帧进行目标检测,得到检测到的目标框。然后,我们在图像中绘制检测到的目标框。
接着,我们使用跟踪器对目标进行跟踪。tracker.update
方法会更新目标框的位置,并返回一个布尔值表示是否成功跟踪。
最后,我们在图像中绘制跟踪框,并显示视频帧。同时,我们还检查按键事件,如果按下了键盘上的 ‘q’ 键,就退出循环。
最后,我们释放摄像头资源,使用cap.release()
函数,关闭窗口,使用cv2.destroyAllWindows()
函数。
通过这段代码,你可以打开摄像头并实时进行目标检测和跟踪,将检测到的目标框和跟踪框绘制在视频帧中,实现目标的实时跟踪。
- 运动检测示例代码
以下是使用OpenCV进行运动检测的示例代码:
import cv2
# 打开摄像头
cap = cv2.VideoCapture(0)
# 读取第一帧作为背景帧
ret, background = cap.read()
background_gray = cv2.cvtColor(background, cv2.COLOR_BGR2GRAY)
background_gray = cv2.GaussianBlur(background_gray, (21, 21), 0)
while True:
# 逐帧捕捉视频
ret, frame = cap.read()
if ret:
# 将当前帧转换为灰度图像
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray_frame = cv2.GaussianBlur(gray_frame, (21, 21), 0)
# 计算当前帧与背景帧的差异
frame_delta = cv2.absdiff(background_gray, gray_frame)
threshold = cv2.threshold(frame_delta, 30, 255, cv2.THRESH_BINARY)[1]
# 对阈值图像进行轮廓检测
contours, _ = cv2.findContours(threshold.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 绘制检测到的运动目标框
for contour in contours:
if cv2.contourArea(contour) > 1000:
(x, y, w, h) = cv2.boundingRect(contour)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# 显示视频帧
cv2.imshow('Motion Detection', frame)
# 按下 'q' 键退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头资源
cap.release()
# 关闭窗口
cv2.destroyAllWindows()
在这个示例中,我们首先打开摄像头。
然后,我们读取第一帧作为背景帧,并将其转换为灰度图像。通过使用高斯模糊cv2.GaussianBlur
来减少噪声对后续运动检测的影响。
接着,我们进入一个循环,逐帧捕捉视频。对于每一帧,我们将其转换为灰度图像,并进行高斯模糊处理。
然后,我们计算当前帧与背景帧之间的差异,通过cv2.absdiff
函数得到差值图像。然后,使用阈值处理cv2.threshold
将差值图像转换为二值图像。
接着,我们使用轮廓检测cv2.findContours
对阈值图像进行运动目标的检测。通过设置面积阈值来过滤掉较小的轮廓。
最后,我们在原始视频帧中绘制检测到的运动目标框,并显示视频帧。同时,我们还检查按键事件,如果按下了键盘上的 ‘q’ 键,就退出循环。
最后,我们释放摄像头资源,使用cap.release()
函数,关闭窗口,使用cv2.destroyAllWindows()
函数。
通过这段代码,你可以打开摄像头并实时进行运动检测,将检测到的运动目标框绘制在视频帧中,实现对运动目标的实时检测。
- 视频编解码示例代码
以下是使用OpenCV进行视频编解码的示例代码:
视频编码示例代码:
import cv2
# 打开摄头
cap = cv2.VideoCapture(0)
# 获取摄像头的宽度和高度
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 创建视频编码器
fourcc = cv2.VideoWriter_fourcc(\*'XVID')
out = cv2.VideoWriter('output.avi', fourcc, 20.0, (width, height))
while True:
# 逐帧捕捉视频
ret, frame = cap.read()
if ret:
# 将视频帧写入视频文件
out.write(frame)
# 显示视频帧
cv2.imshow('Video Encoding', frame)
# 按下 'q' 键退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放资源
cap.release()
out.release()
# 关闭窗口
cv2.destroyAllWindows()
视频解码示例代码:
import cv2
# 打开视频文件
cap = cv2.VideoCapture('video.mp4')
while True:
# 逐帧读取视频
ret, frame = cap.read()
if ret:
# 显示视频帧
cv2.imshow('Video Decoding', frame)
# 按下 'q' 键退出循环
if cv2.waitKey(25) & 0xFF == ord('q'):
break
else:
break
# 释放资源
cap.release()
# 关闭窗口
cv2.destroyAllWindows()
视频编码示例代码中,我们首先打开摄像头。
然后,我们获取摄像头的宽度和高度,以便后续创建视频编码器。
接着,我们进入一个循环,逐帧捕捉视频。对于每一帧,我们将其写入到视频文件中,使用out.write(frame)
。
同时,我们显示视频帧,使用cv2.imshow('Video Encoding', frame)
。
在循环中,我们还检查按键事件,如果按下了键盘上的 ‘q’ 键,就退出循环。
最后,我们释放资源,包括摄像头和视频编码器,使用cap.release()
和out.release()
函数,关闭窗口,使用cv2.destroyAllWindows()
函数。
通过这段代码,你可以打开摄像头并实时进行视频编码,将视频帧写入到指定的视频文件中。
视频解码示例代码中,我们首先打开视频文件。
然后,我们进入一个循环,逐帧读取视频。对于每一帧,我们显示视频帧,使用cv2.imshow('Video Decoding', frame)
。
在循环中,我们还检查按键事件,如果按下了键盘上的 ‘q’ 键,就退出循环。
最后,我们释放资源,包括视频文件,使用cap.release()
函数,关闭窗口,使用cv2.destroyAllWindows()
函数。
通过这段代码,你可以打开视频文件并逐帧读取视频,实现视频的解码和播放。
- 光流估计示例代码
以下是使用OpenCV进行光流估计的示例代码:
import cv2
# 打开视频文件
cap = cv2.VideoCapture('video.mp4')
# 创建Lucas-Kanade光流算法对象
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 读取第一帧
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
# 创建用于绘制光流的颜色
color = (0, 255, 0)
while True:
# 逐帧读取视频
ret, frame = cap.read()
if ret:
# 将当前帧转换为灰度图像
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 计算光流
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, None, None, \*\*lk_params)
# 选择良好的跟踪点
good_new = p1[st == 1]
good_old = p0[st == 1]
# 绘制光流轨迹
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
frame = cv2.line(frame, (a, b), (c, d), color, 2)
frame = cv2.circle(frame, (a, b), 3, color, -1)
# 更新上一帧的图像和追踪点
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1, 1, 2)
# 显示视频帧
cv2.imshow('Optical Flow', frame)
# 按下 'q' 键退出循环
if cv2.waitKey(25) & 0xFF == ord('q'):
break
else:
break
# 释放资源
cap.release()
# 关闭窗口
cv2.destroyAllWindows()
在这个示例中,我们首先打开视频文件。
然后,我们创建Lucas-Kanade光流算法对象,并设置相关参数。
接着,我们读取第一帧,并将其转换为灰度图像。
进入一个循环,逐帧读取视频。对于每一帧,我们将其转换为灰度图像。
然后,使用cv2.calcOpticalFlowPyrLK
函数计算光流,得到新的跟踪点和状态。
接着,我们选择良好的跟踪点,通过筛选状态为1的跟踪点。
然后,我们绘制光流轨迹,在当前帧上绘制线条和圆点。
最后,我们更新上一帧的图像和跟踪点,将当前帧的灰度图像赋值给上一帧的灰度图像,并更新跟踪点。
同时,我们显示视频帧,使用cv2.imshow('Optical Flow', frame)
。
感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!