2024年(九)Django学习——一对一,一对多,数据库索引高频面试题

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

third:

**反向查询:如果模型Student有一个ForeignKey(会自动给Department类添加一个反向查询的属性!),那么该ForeignKey 所指的模型Department实例可以通过一个管理器回到前面有ForeignKey的模型Studnet的所有实例。默认情况下,这个管理器的名字为student_set(可以在对应的表关联API中通过设置related_name的值来自定义),其中student是源模型的小写名称。

拓展:两个表关联的API(OneToOne,Foreignkey,ManyToMany)在谁那,通过谁去查询另一个表的信息就是正向查询;反之就是反向查询。

注意:只限一对多以及多对多;一对一没有_set属性,无法使用!!!

**

在这里插入图片描述

拓展:

**可以在定义时设置related_name 参数来覆盖student_set的名称.

**

在这里插入图片描述

fourth:

**反向查询的一些实用方法:

注意:只限一对多以及多对多;一对一没有这些方法,无法使用!!!**

from .models import User,Article,Department,Student,Course,Stu_detail

def add_user(request):

d = Department.objects.get(d_id=1) #学院表中北大的实例

d3 = Department.objects.get(d_id=3) #学院表中中科的实例

create()方法:新建数据

d.student_set.create(s_name=“小王”) #在北大院系下新建一个学生表信息

aa()方法:修改已经存在的数据(注意:通过实例)

s3 = Student.objects.get(s_id=3) #将s_id为3的学生的院系从北大换到中科

d3.student_set.add(s3)

return HttpResponse(“插入数据成功!”)

seventh:一对一表信息的访问

注意:一对一表关系中使用不了反向查询!!!

from .models import Department,Student,Course,Stu_detail

def add_user(request):

s1 = Student.objects.get(s_id=1) #获得一个学生的实例对象

print(s1.stu_detail)

print(dir(s1.stu_detail)) #会发现没有反向查询_set的属性!

print(s1.stu_detail.age) #只能进行数据查询,不能添加!

#注意:一对一关系的话,反向查询不能使用。所以添加数据只能如下:

Stu_detail.objects.create(Student_id=s1,age=18,phone=123456)

return HttpResponse(“插入数据成功!”)

eigth:多对多表关系:

第一部分:数据的添加及关联!

在这里插入图片描述

from .models import User,Article,Department,Student,Course,Stu_detail

def add_user(request):

s1 = Student.objects.get(s_id=1) #小明

c1 = Course.objects.get(c_id=1) #c

#1.数据库中已存在的数据 将学生表和课程表通过Django自动生成的中间表联系起来

s1.course.add(c1)

#2.数据库中没有的数据 将学生小明与新建的课程"人工智能"联系起来

s1.course.create(c_name=“人工智能”)

return HttpResponse(“插入数据成功!”)

没有执行之前Django自动生成的中间表是空的:

在这里插入图片描述

执行之后Django自动生成的中间表:

在这里插入图片描述

第二部分:数据的指定删除及全部删除!

from .models import Department,Student,Course,Stu_detail

def add_user(request):

s1 = Student.objects.get(s_id=1) #小明

c1 = Course.objects.get(c_id=1) #c

s1.course.remove(c1) #删除小明同学的课程c

s1.course.clear() #删除小明同学的所有课程

return HttpResponse(“插入数据成功!”)

2.多表查询—跨关联关系的查询

=============================================================================

**Django 提供一种强大而又直观的方式来“处理”查询中的关联关系,它在后台自动帮你处理JOIN。 若要跨越关联关系,只需使用关联的模型字段的名称,并使用双下划线分隔,直至你想要的字段:

**

(得到的都是QuertSet型数据!)

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

YOLO系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而高性能,更加灵活和易用,当前非常流行。 本课程将手把手地教大家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。  本课程的YOLOv5使用ultralytics/yolov5,在Windows和Ubuntu系统上分别做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集(自动划分训练集和验证集)、修改配置文件、使用wandb训练可视化工具、训练自己的数据集、测试训练出的网络模型和性能统计。 除本课程《YOLOv5实战训练自己的数据集(Windows和Ubuntu演示)》外,本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:《YOLOv5(PyTorch)目标检测:原理与源码解析》课程链接:https://edu.csdn.net/course/detail/31428《YOLOv5目标检测实战:Flask Web部署》课程链接:https://edu.csdn.net/course/detail/31087《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》课程链接:https://edu.csdn.net/course/detail/32303《YOLOv5目标检测实战:Jetson Nano部署》课程链接:https://edu.csdn.net/course/detail/32451《YOLOv5+DeepSORT多目标跟踪与计数精讲》课程链接:https://edu.csdn.net/course/detail/32669《YOLOv5实战口罩佩戴检测》课程链接:https://edu.csdn.net/course/detail/32744《YOLOv5实战中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/35209 《YOLOv5实战垃圾分类目标检测》课程链接:https://edu.csdn.net/course/detail/35284  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值