高等数学(下)笔记

▶ 三角函数回顾:

①诱导公式:奇变偶不变,符号看象限。

②三角函数关系公式:

 ↑→注:1.对角线上两个三角函数之积等于1。

              2.任何一个顶点等于相邻两个顶点的乘积。

③三角函数求导

注:csc x 与sec x 类似

第一讲、微分方程

 1.齐次线性微分方程的通解:

  推导过程:

2.非齐次线性方程的通解:

可以写成:

  推导过程:①设通解为:  

3.特征方程的根与通解的关系:

4.二阶常系数线性方程非齐次方程的特解:

第二讲、向量

1. 空间直角坐标系:有八个卦限  (如图:1,2,3,4,5,6,7,8)

 2. 方向角:给定→r=(x,y,z)≠→0 ,称为r与三坐标轴的夹角α,β,γ为其方向角。

3. →r的单位向量:

 4. 方向余弦:方向角的余弦。

5. 方向余弦的性质

6. 投影

7. 数量积:=

8. 数量积性质:

9. 向量积:同理可得: i x j = k,i x k = j(i,j,k是三坐标轴单位向量)

 注:(1)满足条件: 1. →c 垂直于 →a 与 →b 所在的平面。   2. 

        (2)思考:

10. 向量积的性质:

11. 向量关系:

11. 平面方程:(方向向量+平面内一个点)

 点法式:

性质:该平面法向量(A,B,C),该平面内的一个点(x0,y0,z0)

 一般式:(法向量不为0)

性质:

当A=0,D=0时,x轴在平面内。

③截距式:          (a,b,c 分别是x轴、y轴、z轴的坐标)

12.面与面的关系:

13.线与面的关系(s是方向向量,n是法向量)

14. 点面距离公式:

15. 空间直线方程:(一个方向向量+一个点)

① 一般式方程(两平面交线): 

② 对称式方程:     方向向量:(m,n,p)

 引入:方向向量:与某向量平行的向量。

③ 参数式方程:    (设  得)                 方向向量:(m,n,p)

16.平面束方程:过同一条直线的所有平面方程。

思路:1. Q:求投影直线方程?          (取特殊情况,面面垂直)

 2. 直线-----方向向量                                    ;                        平面-------法向量

3. 求过已知直线的平面法向量,用平面束方程。

4. 已知直线,求点,用直线参数方程。

第三讲、偏导数

1.区域(领域)(了解仅可):

④ 去心邻域:

 2. 内点、外点、边界点、聚点(了解仅可)

补充:一、聚点:对任意给定的d ,点P 的去心邻域E(p,d)内总有E 中的点。

           二、边界点是聚点的子集。

 ① p1是E的内点     ② p2是E的外点   ③ p3是E的边界点    ④ p1和p3又可以称为聚点

 

3. 偏导数定义:z=f (x0,y0) 的某邻域内极限存在,则称此极限为函数 z=f (x0,y0) 在点(x0,y0)的偏导数,记为

小tips:1. 对x偏导,就把除x的其他变量(比如:y、z、t)看为常数,再对x进行求导。

           2. 偏导数记号是一个整体,不能看作分子和分母,不能进行消除。

4. 二阶偏导数:假设有n个变量,则二阶偏导数有A\binom{2}{n}个。

5. 全微分的作用:计算▲x\rightarrow0的式子,减少误差。

6. 全微分形式:(1)(2)

 

7. 全微分与偏导数的关系:

 

 8. 复合求导方法:① 画出分叉路径图。  ② 写式子。   ③ 运算。

   路径画法口诀:分段用乘, 分叉用加;单路全导, 多路偏导

9. 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值