▶ 三角函数回顾:
①诱导公式:奇变偶不变,符号看象限。
②三角函数关系公式:
↑→注:1.对角线上两个三角函数之积等于1。
2.任何一个顶点等于相邻两个顶点的乘积。
③三角函数求导
注:csc x 与sec x 类似
第一讲、微分方程
1.齐次线性微分方程的通解:
推导过程:
2.非齐次线性方程的通解:
可以写成:
推导过程:①设通解为:
3.特征方程的根与通解的关系:
4.二阶常系数线性方程非齐次方程的特解:
第二讲、向量
1. 空间直角坐标系:有八个卦限。 (如图:1,2,3,4,5,6,7,8)
2. 方向角:给定→r=(x,y,z)≠→0 ,称为r与三坐标轴的夹角α,β,γ为其方向角。
3. →r的单位向量:
4. 方向余弦:方向角的余弦。
5. 方向余弦的性质:
6. 投影:
7. 数量积:=
8. 数量积性质:
9. 向量积:同理可得: i x j = k,i x k = j(i,j,k是三坐标轴单位向量)
注:(1)满足条件: 1. →c 垂直于 →a 与 →b 所在的平面。 2.
(2)思考:
10. 向量积的性质:
11. 向量关系:
11. 平面方程:(方向向量+平面内一个点)
① 点法式:
性质:该平面法向量(A,B,C),该平面内的一个点(x0,y0,z0)
② 一般式:(法向量不为0)
性质:
当A=0,D=0时,x轴在平面内。
③截距式: (a,b,c 分别是x轴、y轴、z轴的坐标)
12.面与面的关系:
13.线与面的关系:(s是方向向量,n是法向量)
14. 点面距离公式:
15. 空间直线方程:(一个方向向量+一个点)
① 一般式方程(两平面交线):
② 对称式方程: 方向向量:(m,n,p)
引入:方向向量:与某向量平行的向量。
③ 参数式方程: (设 得) 方向向量:(m,n,p)
16.平面束方程:过同一条直线的所有平面方程。
思路:1. Q:求投影直线方程? (取特殊情况,面面垂直)
2. 直线-----方向向量 ; 平面-------法向量
3. 求过已知直线的平面法向量,用平面束方程。
4. 已知直线,求点,用直线参数方程。
第三讲、偏导数
1.区域(领域)(了解仅可):
①
②
③
④ 去心邻域:
2. 内点、外点、边界点、聚点(了解仅可):
补充:一、聚点:对任意给定的d ,点P 的去心邻域E(p,d)内总有E 中的点。
二、边界点是聚点的子集。
① p1是E的内点 ② p2是E的外点 ③ p3是E的边界点 ④ p1和p3又可以称为聚点
3. 偏导数定义:z=f (x0,y0) 的某邻域内极限存在,则称此极限为函数 z=f (x0,y0) 在点(x0,y0)的偏导数,记为。
小tips:1. 对x偏导,就把除x的其他变量(比如:y、z、t)看为常数,再对x进行求导。
2. 偏导数记号是一个整体,不能看作分子和分母,不能进行消除。
4. 二阶偏导数:假设有n个变量,则二阶偏导数有个。
5. 全微分的作用:计算▲x0的式子,减少误差。
6. 全微分形式:(1)(2)
7. 全微分与偏导数的关系:
8. 复合求导方法:① 画出分叉路径图。 ② 写式子。 ③ 运算。
路径画法口诀:分段用乘, 分叉用加;单路全导, 多路偏导
9.