线性代数笔记

第一章

一、行列式的性质

1、性质一:D=D^{T}

注:D^{T}是把D的行转为了列。

2、性质二:任意 两行或两列 互换,D=-D1

        推论:若行列式有 两行或两列 相同,则该行列式的值为0。

3、性质三:行列式的某 一行或一列 的公因子可提到外面。

        推论:若行列式 有两行成比例 ,则行列式的值为0。

        推论:若某 一行或一列元素全为0,则该行列式的值为0。

4、性质四:行列式某 一行一列 的元素可分开。

5、性质五:行列式某一行的k倍加到另一行,该行列式的值不变。

二、行列式的计算

1.化三角法:

注意:交换行或列,记得添负号。

2.降阶法。(适用:将2,3,4行加到第一行,提取公因式(a+b+c+d),让第一行全变为1。)

3.行列式按行(列)展开法:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即

①余子式:

② 代数余子式:

③ 推理:行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。

三、线性方程

1.克拉默法则

① 如果线性方程组的系数行列式(D)不等于0,则线性方程有唯一解,解为

例子:

 

 ②如果线性方程组的系数行列式(D)等于0,则线性方程无解或有两个不同解。

 ③若等式右边全为0,则是齐次线性方程。

定理:齐次线性方程有非零解 \Leftrightarrow D=0

          反之,D!=0\Leftrightarrow齐次方程有唯一0解

四、矩阵

1.特殊的矩阵:

①单位矩阵(E):主对角线上的元素全为1,其余元素为0的矩阵。

②对角矩阵:主对角线以外的元素都是0的矩阵。

性质:(a1,a2......an都不为0,-1可改为其他正整数)

③零矩阵:所有元素都是0的矩阵。    (注意:不同阶数的零矩阵是不相等的。)

④同行矩阵:两个矩阵的行数和列数相等。

2.矩阵的运算

①矩阵的加法and减法:两个同阶矩阵才可进行加减。

②矩阵的数乘:Amn × Bnp = Cmp

3.矩阵的性质(注意)

①在矩阵乘法里面一般AB!=BA。      (即矩阵乘法不满足交换律)

②AB=0不能推出A=0或B=0,AB=AC也不能推出B=C。     (即矩阵乘法不满足消去律)

 

   (n为行列式A的行数) (行列式数乘的区别)

⑦ |AB|=|A| × |B|    (矩阵A、B乘积 的 行列式 值等于 行列式A 乘 行列式B)

⑧ A+2=A+2E    (E代表同阶单位矩阵)

五、逆矩阵

1.定义: 矩阵A可逆 \Leftrightarrow |A|!=0

2.求逆矩阵方法(两种 1): 

3.伴随矩阵:Aij 是|A|中各元素的代数余子式。

 4.|A*|与|A|之间的关系:|A*| = |A|^{n-1}

5.求二阶逆矩阵:A=\binom{​{1}{2}}{​{3}{4}}A^{-1}= 1/|A| × \binom{​{4}{-2}}{-31}

6.求一阶逆矩阵:A=(2),A^{-1}=(\frac{1}{2})

六、分块矩阵

1.分块矩阵运算法则:A的行怎么分,B的列就怎么分。

2.分块对角矩阵:若对角的元素都不为0,则有

七、初等变换

1、矩阵等价:矩阵A经过有限次初等变换,变成B;就称A等价于B。记为:A\rightarrowB

2、矩阵的等价标准形:

3、矩阵的三种初等变换:

4、定理:

例如:(1)将A第二行和第三行互换              E(2,3)A 

          (2)将A第二行乘4            E(2(4))A

          (3)将A的第二行的5倍加到第三行               E(3,2(5))A

5、求逆矩阵方法(两种  2):(A|E)=(E|A^{-1}

 注意:1.E代表同阶单位矩阵                 2.行和列只能选其一进行变换

八、矩阵的秩

1.秩的定义:矩阵中不为0的子式的最高阶数。

求秩的方法:进行多次初等变换,让矩阵主对角线下全为0。

2.阶梯形矩阵的定义:①矩阵的0行在矩阵最下一行 。

                                   ②非0行的第1个不为零的元素的列标随着行标的递增而严格增大。 

3.增广矩阵和系数矩阵:

 4.满秩矩阵:可逆矩阵(|A|!=0)+矩阵的秩等于阶数

九、解线性方程组

1.主元:梯形矩阵非0行首个不为0的元素。                                                                                       

2.写出对应增广矩阵,将主元元素变为1,变换完将矩阵写成线性方程组。

注意:若要设未知解,不找主元所在列。

3.性质一:线性方程组有解 \Leftrightarrow 系数矩阵的秩r(A)=增广矩阵的秩r(A,B)

性质二:线性方程有一个解 \Leftrightarrow 系数矩阵的秩r(A)=增广矩阵的秩r(A,B)=未知数的个数n

性质三:线性方程有无穷解 \Leftrightarrow 系数矩阵的秩r(A)=增广矩阵的秩r(A,B)<未知数的个数n

4.齐次线性方程组和非齐次线性方程组:

十、线性相关

1.线性相关的定义:

推论:①包含0向量的任何向量组是线性相关的。  

           ②一个0向量,必相关;一个非0向量,必不相关。

           ③不是线性相关,就是线性无关。

2.线性相关的性质:

①a1,a2,......,a5相关\Leftrightarrow至少一个向量可由其余向量表示

②向量个数m > 向量维数(向量一行或一列的个数)n,m个n维向量线性相关

3.极大无关组满足条件:①a1,a3线性无关        ②每个向量均可由 a1,a3表示

注意:向量的秩=极大无关组含向量的个数

注意:0 < 秩的数量 < 向量个数和向量维数两者中的偏小值

4.极大无关组求法:

①求极大无关组的个数

②非0行主元非0的所在列是线性无关组。

③将矩阵变为最简形矩阵(可求用极大无关组表示)

插入知识最简形举证:指的是矩阵中非零行的第一个非零元素全是1,且非零行的第一个元素1所在的列的其余元素全是0的阵。

5.线性相关的判定:

 1)n个n维向量 :(1,0,3) (2,4,3) (5,2,0)//三个三维向量

         

2)向量构成矩阵的秩 = 向量的个数  (线性无关)

     向量构成矩阵的秩 < 向量的个数  (线性相关)

3.例题:

十一、向量空间

1.含义:设 v为 n 维向量的集合,如果集合 v 非空,且集合v对于加法及数乘两种运算封闭,那么就称集合 v为向量空间。(记为:R的n次方)

插入:运算封闭:

 2.证是否向量空间的基==证向量无关

十一、特征向量

1.特征向量:

2.特征值:(看上面)。

插入:特征值不为0!!!特征向量不为0向量!!!

3.如何求特征值:

4.如何求特征向量:

 

 

利用行列式性质求解行列式通常可以通过如下几个步骤进行: 1. 确定行列式的阶数:行列式的阶数是指行列式的行数和列数相等的数目。例如,一个3阶行列式有3行和3列。 2. 根据行列式的定义:行列式是一个数学工具,用于计算矩阵性质行列式的值可以通过以下公式计算: - 对于2阶行列式: | a b | | c d | 行列式的值等于 ad - bc。 - 对于3阶行列式: | a b c | | d e f | | g h i | 行列式的值等于 aei + bfg + cdh - ceg - bdi - afh。 - 对于更高阶的行列式,可以使用展开定理进行计算。展开定理是将行列式按照某一行或某一列展开成多个次级行列式的和。在计算次级行列式时,可以继续使用展开定理,直到得到2阶行列式为止。 3. 利用行列式性质简化计算:行列式有一些性质可以用来简化计算,例如行列式性质之一是,如果行列式的某一行(或某一列)中所有元素都是0,则该行列式的值为0。此外,行列式的值不受行列互换的影响,即交换行或列的位置不会改变行列式的值。 4. 使用计算工具或编程语言进行计算:行列式的计算可以手动进行,但对于高阶行列式而言,计算过程可能较为复杂和繁琐。因此,可以使用一些计算工具或编程语言进行行列式的计算,例如Matlab、Python中的NumPy等。 综上所述,利用行列式性质求解行列式可以通过确定阶数、应用行列式的定义和性质、以及使用适当的计算工具或编程语言来实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值