一、模型介绍
《BoxInst: High-Performance Instance Segmentation with Box Annotations》于2020年11月发表,出自沈春华组,提出了一个实现 mask 级实例分割的高性能方法,训练时只需使用边框标注。本文中,作者只用到了一个简单的设计就可以实现显著的性能提升,在COCO数据集上 mask AP 由 21.1 % 21.1\%21.1%大幅提升到了31.6 % 31.6\%31.6%。本文核心思想重新设计实例分割中的 mask 学习损失函数,无需修改分割网络本身。新的损失函数无需 mask 标注,就可监督 mask 的训练。它是通过以下两个损失项做到的:1) 一个最小化 ground-truth 边框映射和预测 mask 差异的替代项;2) 一对损失使得颜色相近的相邻像素点类别相同。
接下来我们一起看看如何快速进行论文复现吧!
二、创建实例