4步操作,完成Boxlnst模型复现

本文介绍了BoxInst模型,一种仅使用边框标注实现高性能实例分割的方法。通过重新设计损失函数,无需mask标注即可训练。在COCO数据集上,mask AP从21.1%提升到31.6%。文中详细阐述了如何在极链AI云平台上快速复现该模型,包括创建实例、数据准备、训练和使用预训练权重的步骤。
摘要由CSDN通过智能技术生成

一、模型介绍

《BoxInst: High-Performance Instance Segmentation with Box Annotations》于2020年11月发表,出自沈春华组,提出了一个实现 mask 级实例分割的高性能方法,训练时只需使用边框标注。本文中,作者只用到了一个简单的设计就可以实现显著的性能提升,在COCO数据集上 mask AP 由 21.1 % 21.1\%21.1%大幅提升到了31.6 % 31.6\%31.6%。本文核心思想重新设计实例分割中的 mask 学习损失函数,无需修改分割网络本身。新的损失函数无需 mask 标注,就可监督 mask 的训练。它是通过以下两个损失项做到的:1) 一个最小化 ground-truth 边框映射和预测 mask 差异的替代项;2) 一对损失使得颜色相近的相邻像素点类别相同。 

接下来我们一起看看如何快速进行论文复现吧!

二、创建实例

首先打开极链AI云的官网,选择模型创建实例:

模型列链AI云平台

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值