基于视频的人体姿态检测
- 设计原理
1.1图像分割中运动的运用(运动目标检测)
首先利用统计的方法得到背景模型,并实时地对背景模型进行更新以适应光线变化和场景本身的变化,用形态学方法和检测连通域面积进行后处理,消除噪声和背景扰动带来的影响,在HSV色度空间下检测阴影,得到准确的运动目标。
噪声的影响,会使检测结果中出现一些本身背景的区域像素点被检测成运动区域,也可能是运动目标内的部分区域被漏检。另外,背景的扰动,如树枝、树叶的轻微摇动,会使这部分也被误判断为运动目标,为了消除这些影响,首先对上一步的检测结果用形态学的方法进行处理,在找出经过形态学处理的后的连通域,计算每个连通域中的面积,对于面积小于一定值的区域,将其抛弃,不看做是前景运动目标。
输入视频
找到最大连通域
判断反向角和长宽比
检测人体的躺卧和站立
1.2 bwlabel函数
用法:L = bwlabel(BW,n)
[L,num] = bwlabel(BW,n),这里num返回的就是BW中连通区域的个数。
返回一个和BW大小相同的L矩阵,包含了标记了BW中每个连通区域的类别标签,这些标签的值为1、2、num(连通区域的个数)。n的值为4或8,表示是按4连通寻找区域,还是8连通寻找,默认为8。
四连通或八连通是图像处理里的基本感念:8连通,是说一个像素,如果和其他像素在上、下、左、右、左上角、左下角、右上角或右下角连接着,则认为他们是联通的;4连通是指,如果像素的位置在其他像素相邻的上、下、左或右,则认为他们是连接着的,连通的,在左上角、左下角、右上角或右下角连接,则不认为他们连通。
1.3 regionprops统计被标记的区域的面积分布,显示区域总数
函数regionprops语法规则为:STATS = regionprops(L,properties)
该函数用来测量标注矩阵L中每一个标注区域的一系列属性。L中不同的正整数元素对应不同的区域,例如:L中等于整数1的元素对应区域1;L中等于整数2的元素对应区域2;以此类推。返回值STATS是一个 长度为max(L(:))的结构数组,结构数组的相应域定义了每一个区域相应属性下的度量。
Properties可以是由逗号分割的字符串列表、包含字符 串的单元数组、单个字符串'all'或者'basic'。如果properties等于字符串'all',则表4.1中的度量数据都将被计算;如果properties等于字符串'basic',则属性:'Area','Centroid'和'BoundingBox'将被计算。
'Area'—— 图像各个区域中像素总个数
'BoundingBox' —— 包含相应区域的最小矩形
'Orientation' 与区域具有相同标准二阶中心矩的椭圆的长轴与x轴的交角(度)
- 设计内容
3.1理论依据
3.1.1应用背景与意义
随着监控系统到位,以帮助人们甚至完成监控任务。可以减少人力和财力的投入,由于就业监视人员进行。另外,如果长时间不运动图像信息记录,保存几下,就失去了意义和视频监控系统的存储资源浪费存储空间。因此,传统的监视系统浪费了大量的人力,并有可能引起报警,性能差的实时监控的泄漏。监控等实时行为分析系统来识别人体,不仅可以替代监控人员的工作的一部分,提高监测系统的自动化水平,同时也提高监视存储的效率,还有一个广泛的应用,并在视频监视系统的潜在经济价值之前。由于人的行为具有自由的伟大程度,因为身体宽松长裙不同程度和它的外貌和从图像捕获设备位置不同距离的表现风格将是一个很大的分歧,这