【图像处理】基于POP算法实现实时带电粒子图像重建matlab源码

1 算法介绍

A method to reconstruct full three-dimensional photofragment distributions from their two-dimensional (2D) projection onto a detection plane is presented, for processes in which the expanding Newton sphere has cylindrical symmetry around an axis parallel to the projection plane. The method is based on: (1) onion-peeling in polar coordinates [Zhaoet al.,Rev. Sci. Instrum.73,3044(2002)] in which the contribution to the 2D projection from events outside the plane bisecting the Newton sphere are subtracted in polar coordinates at incrementally decreasing radii; and (2) ideas borrowed from the basis set expansion (pBASEX) method in polar coordinates [Garciaet al.,Rev. Sci. Instrum.75,4989(2004)], which we use to generate 2D projections at each incremental radius for the subtraction. Our method is as good as the pBASEX method in terms of accuracy, is devoid of centerline noise common to reconstruction methods employing Cartesian coordinates; and it is computationally cheap allowing images to be reconstructed as they are being acquired in a typical imaging experiment.

 

 

 

 

 

 

2 部分代码


%
%% defaults
if (nargin < 5);                                               flagpeel = 1; end
if (nargin < 4);                                cartImage = 0; flagpeel = 1; end
if (nargin < 3);                  qParams=1:4 ; cartImage = 0; flagpeel = 1; end
if (nargin < 2);  bParams=[2 4];  qParams=1:4 ; cartImage = 0; flagpeel = 1; end
if (nargin < 1);  load testimg ; bParams=[2 4];  qParams=1:4 ; cartImage = 'sim'; flagpeel = 1; end


% Check that the beta Parameters are in the scope of the code
if any(mod(bParams,2)) || any(bParams<=0) || any(bParams>42)
    error('Only even positive beta parameters of <=42 orders supported! Beyond that order there are floating point accuracy errors and vpa treatment is needed');
end

% Check that the images size in the scope of the code
if max(size(im))>4156
    error('incompatible image size, the code supports images up to 4156x4156 pixels');
end

if min(size(im))<15
    error('image size too small to obtain meaningful analysis');
end


%% Here we go:
x0=ceil(size(im,1)/2); y0=ceil(size(im,2)/2); % Assuming image is centered
L = min([x0,y0]);%,(size(im) - [x0,y0])]);%set radius of square matrix around center
RR=(0:size(im)/2);
PPR=(floor(0.5*pi*(RR+1))-1); % # of pixels per radius
AngleInc = (0.5*pi./PPR'); % angle increment per radius
AngleInc(1)=0; % avoid inf at origin

iraraw=tripolar(im,qParams);
PESR=nansum(iraraw,2)./nansum(iraraw>0,2).*(1:size(iraraw,1)) ;


if flagpeel
    % load radial basis set  (radial projection of spherical delta functions)
    matObjLut = matfile('lut.mat');
    lut=matObjLut.lut(1:L,1:L); % this loads only the relevant size lut
    
    % Do the Legendre decomposition
    [betas, iradecon, iradeconExp, PESId, PESIdExp]=LDP(iraraw, bParams,lut);
else
    [betas, iradecon, iradeconExp, PESId, PESIdExp]=LDP(iraraw, bParams);
end

PESId(~isfinite(PESId))=0;
iradecon(~isfinite(iradecon))=0;
iradeconExp(~isfinite(iradeconExp))=0;

%  Create a square polar projection from the triangular one
sqp=t2s(iraraw);
sqpd=t2s(iradecon);
sqpde=t2s(iradeconExp);

% 2d transform to Cartesian coordinates of the simulated\exp image
if strcmp(cartImage, 'sim')
    zz=t2f(iradecon,L,PPR,AngleInc,im);
    s=struct('iraraw',iraraw,'iradecon',iradecon, 'iradeconExp', iradeconExp,...
        'sqp',sqp,'sqpd',sqpd,'sqpde',sqpde,'PESR',PESR,'PESId',PESId,'PESIdExp',PESIdExp,...
        'Betas',betas,'simImage',zz);
    
elseif (strcmp(cartImage,'exp'))
    zz=t2f(iradeconExp,L,PPR,AngleInc,im);
    s=struct('iraraw',iraraw,'iradecon',iradecon, 'iradeconExp', iradeconExp,...
        'sqp',sqp,'sqpd',sqpd,'sqpde',sqpde,'PESR',PESR,'PESId',PESId,'PESIdExp',PESIdExp,'Betas',betas,'expImage',zz);
    
elseif cartImage==0
    s=struct('iraraw',iraraw,'iradecon',iradecon,'iradeconExp', iradeconExp,...
        'sqp',sqp,'sqpd',sqpd,'sqpde',sqpde,'PESR',PESR,'PESId',PESId,'PESIdExp',PESIdExp, 'Betas',betas);
end

% demo mode - in case there's no input to the function, use test img
if (nargin < 1)
    
    imagesc([im(:,1:end/2)./max(max(im(:,1:end/2))) s.simImage(:,end/2+1:end)./max(max( s.simImage(:,end/2+1:end)))]); axis square  
    title('raw vs onion peeled');
    
    figure('Position',[0 0 1000 600]);
    r=1:numel(s.PESId);
    subplot(2,3,1);imagesc(im); title('raw image');xlabel('x-pixels');ylabel('y-pixels');
    subplot(2,3,2);imagesc(s.iraraw); title('iraraw');xlabel('folded angle (PPR)');ylabel('radius');
    subplot(2,3,3);imagesc([0 pi/2],[0 size(s.sqp,1)],s.sqp); title('sqp');xlabel('angle [rad]');ylabel('radius');
    
    subplot(2,3,4);imagesc(s.simImage); title('sim Image');xlabel('x-pixels');ylabel('y-pixels');
    subplot(2,3,5);imagesc(s.iradecon.*(s.iradecon>0));title('iradecon');xlabel('folded angle (PPR)');ylabel('radius');
    subplot(2,3,6);imagesc([0 pi/2],[0 size(s.sqpd,1)],s.sqpd.*(s.sqpd>0)); title('sqpd');xlabel('angle');ylabel('radius');
    
    sb=size(s.Betas,1);
    figure('Position',[0 0 250*(sb+1) 250]);
    subplot(1,sb+1,1); plot(r,s.PESId);title('PESId');xlabel('radius');ylabel('intensity');
    for nsb=1:sb
        subplot(1,sb+1,1+nsb);  plot(r,s.Betas(nsb,:).*(s.PESId>0.1*max(s.PESId))); title(['\beta_{' num2str(nsb*2-2) '}']);xlabel('radius');ylabel('intensity');
    end
end

function ira=tripolar(im, qParams)
% This function accepts a centered image (im), and quadrant parameters (1
% to 4) and produces a polar representation that transforms each cartesean
% quadrant to the correct polar pixel size. Because the larger the radii the
% higher the angular resolution (or the more polar pixels), the result is a
% represenation that has a triangular form, from 0 to pi/2.
% The code starts with a Cartesian image of square pixel size dx*dy=1, and
% outputs a polar image of polar pixels that has a similar amount of
% information in polar coordinates dr*dtheta~=1.  The signal in each polar
% pixel is determined via its fractional overlap with the four surrounding
% Cartesian pixels. The result is a triangular polar representation,
% because the number of polar pixels per radius per angle increase with
% radius, i.e. the larger the radius the higher the angular resolution.
% The quadrants are then added because of the cylidrical symmetry in VMI.
% The code support NaN valued pixels for masking.

x0=ceil(size(im,1)/2); y0=ceil(size(im,2)/2); % Assuming image is centered
RR=(0:size(im)/2);
PPR=(floor(0.5*pi*(RR+1))-1); % calc the  # of pixels per radius
AngleInc = (0.5*pi./PPR'); % angle increment per radius
AngleInc(1)=0; % avoid inf at origin

%set radius of square matrix around center
L = min([x0,y0,(size(im) - [x0,y0])]);

%create  image quadrants
if mod(size(im,1),2)==1 %case for odd pixel image size
    Q(:,:,1) =  im(x0:-1:x0-L+1,y0:y0+L-1);
    Q(:,:,2) =  im(x0:-1:x0-L+1,y0:-1:y0-L+1);
    Q(:,:,3) =  im(x0:x0+L-1   ,y0:-1:y0-L+1);
    Q(:,:,4) =  im(x0:x0+L-1   ,y0:y0+L-1);
else %case for even pixel image size
    Q(:,:,1) =  im(x0:-1:x0-L+1,y0+1:y0+L);
    Q(:,:,2) =  im(x0:-1:x0-L+1,y0:-1:y0-L+1);
    Q(:,:,3) =  im(x0+1:x0+L   ,y0:-1:y0-L+1);
    Q(:,:,4) =  im(x0+1:x0+L   ,y0+1:y0+L);
end

%add image quadrants.  NaN's or zeros are not counted if more than one
%quadrant contribute, values are averaged. This assumes that each quadrant
%has the same response or sensitivity, if not this need to be corrected
a4=nansum(Q(:,:,qParams),3)./sum( ~isnan(Q(:,:,qParams)).*(Q(:,:,qParams)>0),3);

ira = NaN(L-2,PPR(L)); % initialize the  matrix
ira(1,1) = a4(1,1);      % origin pixel remains the same

% creating the 2d triangular array polar image
for r=2:L-2
    npr=PPR(r); % determine # polar pix in radius
    angincr=AngleInc(r);    % the angular increment per radius
    qp=0:npr;
    xp=r*sin(angincr*qp)+1;  % polar x-coordinate
    yp=r*cos(angincr*qp)+1;  % polar y-coordinate
    
    % define scale fractional weight of cart pixels in polar pixels
    xc=round(xp);yc=round(yp);
    xd=1-abs(xc-xp);
    yd=1-abs(yc-yp);
    
    a4r=[ (a4(xc+(yc-1)*L));
        0 (a4(xc(2:npr)+(yc(2:npr)-1+(-1).^(yp(2:npr)<yc(2:npr)))*L)) 0;
        0 (a4(xc(2:npr)+(-1).^(xp(2:npr)<xc(2:npr))+yc(2:npr)*L)) 0;
        0 (a4(xc(2:npr)+(-1).^(xp(2:npr)<xc(2:npr))+L*(yc(2:npr)+(-1).^(yp(2:npr)<yc(2:npr))))) 0];
    
    c=[xd.*yd;
        0 xd(2:npr).*(1-yd(2:npr)) 0;
        0 (1-xd(2:npr)).*yd(2:npr) 0;
        0 (1-xd(2:npr)).*(1-yd(2:npr)) 0];
    
    c=bsxfun(@rdivide,c.*(~isnan(a4r)),sum(c.*(~isnan(a4r))));
    
    ira(r,1:npr+1) = nansum(c.*a4r);
    % only when all four surrounding Cartesian pixels are NaN assign NaN
    ira(r,all(isnan(c.*a4r)))=NaN;
    
end

function [betas, iradecon, iradeconExp, PESId, PESIdExp]=LDP(ira, bParams,lut)
% This function accepts the trianguler polar representation (ira) from the
% previous function tripolar, as well as beta parameters (bParams) 
% for Legendre decomposition in angle and a basis set (lut) for onion peeling
% The outputs are detailed in the header of this code 

% defaults
if (nargin < 2)
    bParams=[2 4];
    flagpeel=0;
end

if exist('lut','var')
    flagpeel=1;
else
    flagpeel=0;
end

PPR=(floor(0.5*pi*(1:size(ira,1) ))-1); % calc the  # of pixels per radius
AngleInc = 0.5*pi./PPR'; % angle increment per radius
AngleInc(1)=0;
L=size(ira,1);
betas = zeros(numel(bParams)+1,L);
PESId = zeros(1,L);

for r =  L-2:-1:2
    
    npr=PPR(r); % # of polar pixels in radius -1
    qp=0:npr;
    
    % for very small radii we reduce the maximal beta value
    % allowed to avoid divergences at the origin
    if npr/2 <= max(bParams)
        bParams=2:2:npr/2;
    end
    
    y = ira(r,qp+1); % assign row of all pixels in radius rp
    % this may have NaN values, one we is to interpulate over them if they
    % are not at the edges, and extrapulate at the edges using Burgs
    % method. We will ignore this solution for now
    
    B = zeros(1,numel(bParams+1));
    % this is beta0, including if there are NaN values
    B(1)=nansum(y)/sum(~isnan(y))*(npr+1);
    % BB1=nansum(y);
    
    
    % one fit coefficient for each B param
    fitCoefs = ones(numel(bParams + 1), sum(~isnan(y)));
    for ii=(1:numel(bParams))
        % assign relevenat legendre polinomials to fitCoef
        fitCoefs(ii+1,:) = leg(bParams(ii), cos(AngleInc(r)*qp(~isnan(y))));
        B(ii+1) = y(~isnan(y))*fitCoefs(ii+1,:)'; % fill B vector
    end
    
    A = fitCoefs * fitCoefs'; % matrix A for least square fitting
    A(1,1)=npr+1;
    lastwarn(''); % reset last warning
    
    Ain=A\eye(size(A)); % instead of inv(A)
    
    [~, msgid] = lastwarn; % capture warning in case Ain is close to singular
    if strcmp(msgid,'MATLAB:nearlySingularMatrix')
        % switch to Moore-Penrose pseudoinverse in case of nearly singular
        Ain =  pinv(A);
    end
    
    Beta = zeros(1,numel(bParams+1));
    Beta(1)=B*Ain(:,1);
    
    betas(1,r)=abs(Beta(1));   % Beta0 is just the Intensity Factor
    
    
    for ii=1:numel(bParams)
        Beta(ii+1)=B*Ain(:,ii+1)/Beta(1); % generate beta matrix
        %  Beta(ii+1)=B*Ain(:,ii+1); % generate beta matrix
        betas(ii+1,r) = Beta(ii+1); % copy for output betas
    end
    
    %%%%%%%
    
    if 0==Beta(1)
        PESId(r)=0;
        continue;
    end
    % generate matrices for alpha; R/rp * cos(alpha); and the basis set
    % scaled by pixels per radius
    alphaMat = (AngleInc(1:r) * (0:PPR(r)));
    rrpCosAlphaMat = repmat((1:r)'/r, 1, PPR(r)+1).*cos(alphaMat);
    if flagpeel
        itMat = repmat((lut(r+1,2:r+1)*(npr+1)./ (PPR(1:r)+1))', 1, PPR(r)+1);
    end
    bContrib = ones(r, PPR(r)+1);
    
    for ii=1:numel(bParams) %  add each beta contribution
        bContrib = bContrib + Beta(ii+1)*leg(bParams(ii), rrpCosAlphaMat);
    end
    
    % generate the simulated image for this radius
    if flagpeel
        factMat = Beta(1).*itMat.*bContrib;
    else
        factMat = Beta(1).*bContrib;
    end
    
    % save the simulated data
    PESId(r) = PESId(r) + sqrt(r)*factMat(end,:)*sin(alphaMat(end,:))';
    iradecon(r,1:PPR(r)+1)=factMat(end,1:PPR(r)+1);%/sqrt(r);
    % save the experimentala data
    PESIdExp(r) = PESId(r) + sqrt(r)*ira(r,1:PPR(r)+1)*sin(alphaMat(end,:))';
    iradeconExp(r,1:PPR(r)+1)=ira(r,1:PPR(r)+1);%/sqrt(r);
    %% subtract away the simulated image
    if flagpeel
        % ira(1:r,1:PPR(r)+1) = ira(1:r,1:PPR(r)+1)-factMat;
        ira(1:r,qp+1) = max(ira(1:r,qp+1)-factMat,zeros(r,numel(qp))); % subtract fact from ira unless smaller than zero
    end
end


function squmat=t2s(trimat)
% transfer from triangular polar matrix to square polar matrix for ease
% this is just done for visualizing the polar data
PPR=(floor(0.5*pi*((0:size(trimat,1))+1))-1); % calc the  # of pixels per radius in quadrant
[Ms,Ns] = size(trimat);
% create a matrix that "squares" the triangular polar matrix
squmat=zeros(Ms,Ns);
squmat(1,:)=ones(1,Ns).*trimat(1,1);

for k=2:Ms
    try % in case data is all zero, then interp1 wont work
        %first map pixels in given range to new range
        smap=interp1(1:PPR(k) , single(~isnan(trimat(k,1:PPR(k)))) , linspace(1,PPR(k),Ns) ,'nearest');
        % interp only on non NaN pixels
        nr=~isnan(trimat(k,1:PPR(k)));
        squmat(k,:)=interp1(find(nr),trimat(k,nr),linspace(1,PPR(k),Ns),'nearest');
        squmat(k,~smap)=NaN;
        
    catch
    end
end

function fullcart=t2f(trimat,L,PPR,AngleInc,im)
% transfer from triangular polar matrix to full Cartesian matrix
x = []; y = []; z = [];
for r = 1:L-5
    qp = 0:PPR(r);
    x = [x r*cos((qp)*AngleInc(r))];
    y = [y r*sin((qp)*AngleInc(r))];
    z = [z trimat(r,qp+1)];
end

try % Making sure the interpolation function is Matlab version independent
    F = scatteredInterpolant(double(x(:)),double(y(:)),double(z(:)),'natural');
catch
    disp('for older matlab versions use F = TriScatteredInterp(...)');
end

[xx,yy] = meshgrid(1:L,1:L);
zz = F(xx,yy);
zz = max(zz,zeros(size(zz)));

m4=@(m)[rot90(m,2), flipud(m); fliplr(m),m]; % fold back from quad to full
fullcart=m4(zz);

if all(mod(size(im),2)) %for the case of odd # of pixels in image
    fullcart(end/2,:)=[];
    fullcart(:,end/2)=[];
end

% masking the central pixels where noise accumulates, and anything beyond L
[xm,ym] = meshgrid(1:size(fullcart,1));
innermask=1-exp(-(xm-size(fullcart,1)/2).^2/10-(ym-size(fullcart,2)/2).^2/10);
outermask=(xm-size(fullcart,1)/2).^2+(ym-size(fullcart,1)/2).^2 <L.^2;
fullcart=fullcart.*outermask.*innermask;

function p=leg(m,x)
%  This function returns Legendre polynomial P_m(x) where m is the degree
%  of polynomial and X is the variable.
%  x2 is used for improved performance by minimizing the # of operations.
switch m
    case 0
        p=ones(size(x));
        return
    case 1
        p=x;
        return
    case 2
        p=(3*x.*x -1)/2;
        return
    case 4
        x2=x.*x;
        p = ((35.*x2-30).*x2+3)/8;
        return
    case 6
        x2=x.*x;
        p = (((231.*x2-315).*x2+105).*x2-5)/16;
        return
    case 8
        x2=x.*x;
        p = ((((6435.*x2-12012).*x2+6930).*x2-1260).*x2+35)/128;
        return
    case 10
        x2=x.*x;
        p = (((((46189.*x2-109395).*x2+90090).*x2-30030).*x2+3465).*x2-63)/256;
        return
    case 12
        x2=x.*x;
        p = ((((((676039.*x2-1939938).*x2+2078505).*x2-1021020).*x2+225225).*x2-18018).*x2+231)/1024;
        return
    case 14
        x2=x.*x;
        p = (((((((5014575.*x2-16900975).*x2+22309287).*x2-14549535).*x2+4849845).*x2-765765).*x2+45045).*x2-429)/2048;
        return
    case 16
        x2=x.*x;
        p = ((((((((300540195.*x2-1163381400).*x2+1825305300).*x2-1487285800).*x2+669278610).*x2-162954792).*x2+19399380).*x2-875160).*x2+6435)/32768;
        return
    case 18
        x2=x.*x;
        p = (((((((((2268783825.*x2-9917826435).*x2+18032411700).*x2-17644617900).*x2+10039179150).*x2-3346393050).*x2+624660036).*x2-58198140).*x2+2078505).*x2-12155)/65536;
        return
    case 20
        x2=x.*x;
        p = ((((((((((34461632205.*x2-167890003050).*x2+347123925225).*x2-396713057400).*x2+273491577450).*x2-116454478140).*x2+30117537450).*x2-4461857400).*x2+334639305).*x2-9699690).*x2+46189)/262144;
        return
    case 22
        x2=x.*x;
        p = (((((((((((263012370465.*x2-1412926920405).*x2+3273855059475).*x2-4281195077775).*x2+3471239252250).*x2-1805044411170).*x2+601681470390).*x2-124772655150).*x2+15058768725).*x2-929553625).*x2+22309287).*x2-88179)/524288;
        return
    case 24
        x2=x.*x;
        p = ((((((((((((8061900920775.*x2-47342226683700).*x2+121511715154830).*x2-178970743251300).*x2+166966608033225).*x2-102748681866600).*x2+42117702927300).*x2-11345993441640).*x2+1933976154825).*x2-194090796900).*x2+10039179150).*x2-202811700).*x2+676039)/4194304;
        return
    case 26
        x2=x.*x;
        p= (((((((((((((61989816618513 .*x2-395033145117975) .*x2+1112542327066950) .*x2-1822675727322450) .*x2+1923935489951475) .*x2-1369126185872445) .*x2+667866432132900) .*x2-222622144044300) .*x2+49638721307175) .*x2-7091245901025) .*x2+601681470390) .*x2-26466926850) .*x2+456326325) .*x2-1300075)/8388608;
        return
    case 28
        x2=x.*x;
        p= ((((((((((((((956086325095055 .*x2-6570920561562378) .*x2+20146690401016725) .*x2-36343049350853700) .*x2+42832879592077575) .*x2-34630838819126550) .*x2+19624141997505045) .*x2-7823578204985400) .*x2+2170565904431925) .*x2-408140597414550) .*x2+49638721307175) .*x2-3610088822340) .*x2+136745788725) .*x2-2035917450) .*x2+5014575)/33554432;
        return
    case 30
        x2=x.*x;
        p= (((((((((((((((7391536347803839 .*x2)-54496920530418135 .*x2)+180700315442965395 .*x2)-355924863751295475 .*x2)+463373879223384675 .*x2)-419762220002360235 .*x2)+271274904083157975 .*x2)-126155198555389575 .*x2)+42051732851796525 .*x2)-9888133564634325 .*x2)+1591748329916745 .*x2)-166966608033225 .*x2)+10529425731825 .*x2)-347123925225 .*x2)+4508102925 .*x2-9694845)/67108864;
        return
    case 32
        x2=x.*x;
        p= ((((((((((((((((916312070471295267 .*x2)-7214139475456546864 .*x2)+25722546490357359720 .*x2)-54932895894661480080 .*x2)+78303470025285004500 .*x2)-78588209916286040880 .*x2)+57087661920320991960 .*x2)-30382789257313693200 .*x2)+11858588664206620050 .*x2)-3364138628143722000 .*x2)+680303589246841560 .*x2)-94926082220489520 .*x2)+8682263617727700 .*x2)-479493848710800 .*x2)+13884957009000 .*x2)-158685222960 .*x2+300540195)/2147483648;
        return
    case 34
        x2=x.*x;
        p= (((((((((((((((((7113260368810144185 .*x2)-59560284580634192355 .*x2)+227245393476881226216 .*x2)-523025111970599647640 .*x2)+810260214446256831180 .*x2)-892659558288249051300 .*x2)+720391924232622041400 .*x2)-432235154539573224840 .*x2)+193690281515374794150 .*x2)-64563427171791598050 .*x2)+15811451552275493400 .*x2)-2783060137827988200 .*x2)+340151794623420780 .*x2)-27382523717448900 .*x2)+1335732864265800 .*x2)-34249560622200 .*x2)+347123925225 .*x2-583401555)/4294967296;
        return
    case 36
        x2=x.*x;
        p= ((((((((((((((((((110628135069209194801 .*x2)-981629930895799897530 .*x2)+3990539066902490887785 .*x2)-9847300383998186469360 .*x2)+16475291027073888900660 .*x2)-19770349232488666680792 .*x2)+17555637979668898008900 .*x2)-11732097051788416102800 .*x2)+5943233374919131841550 .*x2)-2281241093403303131100 .*x2)+658546957152274300110 .*x2)-140865659283908941200 .*x2)+21800637746319240900 .*x2)-2354897039700605400 .*x2)+168206931407186100 .*x2)-7302006324653040 .*x2)+166966608033225 .*x2)-1511010027450 .*x2+2268783825)/17179869184;
        return
    case 38
        x2=x.*x;
        p= (((((((((((((((((((861577581086657669325 .*x2)-8075853860052271220473 .*x2)+34847862546800896362315 .*x2)-91782398538757290419055 .*x2)+164942281431969623361780 .*x2)-214178783351960555708580 .*x2)+207588666941131000148316 .*x2)-152984845251400396934700 .*x2)+86524215756939568758150 .*x2)-37640478041154501663150 .*x2)+12546826013718167221050 .*x2)-3172998975370048900530 .*x2)+598679051956613000100 .*x2)-82171634582280215700 .*x2)+7905725776137746700 .*x2)-504620794221558300 .*x2)+19624141997505045 .*x2)-402684172315425 .*x2)+3273855059475 .*x2-4418157975)/34359738368;
        return
    case 40
        x2=x.*x;
        p=((((((((((((((((((((26876802183334044115405 .*x2)-265365894974690562152100 .*x2)+1211378079007840683070950 .*x2)-3391858621221953912598660 .*x2)+6516550296251767619752905 .*x2)-9104813935044723209570256 .*x2)+9566652323054238154983240 .*x2)-7710436200670580005508880 .*x2)+4819022625419112503443050 .*x2)-2345767627188139419665400 .*x2)+888315281771246239250340 .*x2)-260061484647976556945400 .*x2)+58171647881784229843050 .*x2)-9763073770369381232400 .*x2)+1197358103913226000200 .*x2)-103301483474866556880 .*x2)+5929294332103310025 .*x2)-207785032914759300 .*x2)+3847870979902950 .*x2)-28258538408100 .*x2+34461632205)/274877906944;
        return
    case 42
        x2=x.*x;
        p=(((((((((((((((((((((209863810776486386280915 .*x2)-2177020976850057573347805 .*x2)+10481952851500277205007950 .*x2)-31092037361201244198821050 .*x2)+63597349147911635861224875 .*x2)-95141634325275807248392413 .*x2)+107740298231362557979914696 .*x2)-94299858612963204670549080 .*x2)+64574903180616107546136870 .*x2)-34804052294693590302644250 .*x2)+14778336051285278343892020 .*x2)-4926112017095092781297340 .*x2)+1278635632852551404981550 .*x2)-255060302250900084696450 .*x2)+38354932669308283413000 .*x2)-4230665300493398534040 .*x2)+329273478576137150055 .*x2)-17090318957238952425 .*x2)+542549808166315950 .*x2)-9113378636612250 .*x2)+60755857577415 .*x2-67282234305)/549755813888;
        return
end

function y = nansum(x,dim)
% Sum, ignoring NaNs.
x(isnan(x)) = 0;
if nargin == 1 % let sum figure out which dimension to work along
    y = sum(x);
else           % work along the explicitly given dimension
    y = sum(x,dim);
end

3 仿真结果

 

 

 

4 参考文献

[1] Roberts G M ,  Nixon J L ,  Lecointre J , et al. Toward real-time charged-particle image reconstruction using polar onion-peeling[J]. The Review of scientific instruments, 2009, 80(5):053104.

5 代码下载

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
实现 遗传算法是一种优化算法,它可以用于图像分割。在这个算法,我们使用一种称为“基因”的编码来表示图像分割的解。每个基因都代表着一个像素,它的值表示该像素属于哪个类别。通过遗传算法,我们可以寻找最优的基因组合,以达到最优的图像分割结果。 遗传算法的基本流程如下: 1. 初始化种群:生成一组随机的基因组合作为初始种群。 2. 适应度评估:对每个基因组合进行适应度评估,以确定其质量。 3. 选择:选择适应度高的基因组合,使其有更高的机会在下一代生存下来。 4. 交叉:随机选择两个基因组合,将它们的基因进行交叉,产生新的基因组合。 5. 变异:对新的基因组合进行变异操作,使其具有更多的多样性。 6. 重复:重复执行步骤2到步骤5,直到达到停止条件。 7. 输出最优解:输出适应度最高的基因组合,作为最优的图像分割结果。 下面是一个基于遗传算法的图像分割的示例代码: ```matlab %% 遗传算法图像分割 % 读取图像 I = imread('lena.png'); % 将图像转换为灰度图像 Igray = rgb2gray(I); % 定义类别数 k = 3; % 定义种群大小和迭代次数 popSize = 50; maxIter = 100; % 定义变异率和交叉率 mutationRate = 0.1; crossoverRate = 0.7; % 将图像转换为一维数组 Ivec = Igray(:); % 定义适应度函数 fitnessFcn = @(x) imageSegmentationFitness(x, Ivec, k); % 初始化种群 pop = createInitialPopulation(popSize, length(Ivec), k); % 进行遗传算法优化 for i = 1:maxIter % 评估种群适应度 fitness = evaluatePopulation(pop, fitnessFcn); % 选择父代 parents = selectParents(pop, fitness); % 交叉 offspring = crossover(parents, crossoverRate); % 变异 offspring = mutate(offspring, mutationRate); % 合并父代和子代 pop = [parents; offspring]; end % 评估最终种群适应度 fitness = evaluatePopulation(pop, fitnessFcn); % 找到适应度最高的个体 [~, idx] = max(fitness); bestIndividual = pop(idx, :); % 将结果转换为图像 segMap = reshape(bestIndividual, size(Igray)); % 显示原图像和分割结果 figure; subplot(1,2,1); imshow(Igray); title('原图像'); subplot(1,2,2); imshow(label2rgb(segMap)); title('分割结果'); ``` 其,`imageSegmentationFitness`函数用于计算图像分割的适应度,`createInitialPopulation`函数用于生成初始种群,`evaluatePopulation`函数用于评估种群适应度,`selectParents`函数用于选择父代,`crossover`函数用于进行交叉操作,`mutate`函数用于进行变异操作。最终的分割结果如下图所示: ![image](https://cdn.luogu.com.cn/upload/image_hosting/edk59y7r.png) 可以看到,使用遗传算法进行图像分割可以得到较好的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值