【动物识别】基于计算机视觉实现动物图像分类识别附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

为解决动物图像分类识别问题,提出了一种基于颜色特征的动物图像分类识别方法.该方法很好地利用了颜色直方图和低阶统计矩的属性.首先确定选择HSV颜色空间,依据图像的颜色直方图特性调整低阶统计矩数值作为特征描述量,再通过K近邻方法判断图像所属类别,并构建仿真系统.实验另外对比了组合类与单一类特征在识别准确率上的差异.实验表明,该方法能较有效地识别出不同种类的动物,平均正确识别率可达89%.仿真系统具有实用性,组合类特征可在一定程度上提高识别准确率并降低识别时间.

⛄ 部分代码

function bwpic = RGB2bw(img)

% 二值化彩色图像

grayimg = rgb2gray(img);

grayimg = 1 - double(grayimg)/255;

bwpic = im2bw(grayimg, 0.1);

SE = strel('rectangle', [5 5]);  %创建5x5的结构元素对象

bwpic = imerode(bwpic, SE);      %腐蚀

bwpic = imdilate(bwpic, SE);     %膨胀

%imshow(bwimg);

end

⛄ 运行结果

⛄ 参考文献

[1] 谢永华, 徐其森, 蒋珏泽,等. 一种基于深度学习动物图像识别的检测系统:, CN216211141U[P]. 2022.

[2] 初未萌. 一种基于广义Hough变换的动物图像识别方法研究[D]. 哈尔滨工业大学, 2014.

[3] 张公伯, 谷昱良, 朱和贵. 基于颜色特征的动物图像分类识别仿真系统设计[J]. 舰船电子工程, 2017, 37(5):5.

[4] 王楠, 黄祺, 程川. 一种基于深度学习的动物图像识别方法及系统:, CN112380962A[P]. 2021.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值