- 博客(495)
- 收藏
- 关注
原创 香港中文大学任洪亮/胡国华教授最新Adv. Robotics Res. | 具身触觉智能的气球机器人
为了解决这一问题,我们提出了一种创新的设计策略,通过优化柔性传感器的几何形状和布局,增强软气球系统的接触感知能力。这些进展为未来柔性传感器的设计提供了新的视角,助力开发安全、用户友好的交互式机器人。(c)将墨水转移到设计好的耐热模具中,热固化墨水,然后脱模柔性传感器将柔性传感器安装到弹性可变形表面上时的两种拉伸布局类型条形和欧米茄形传感器在气球充气过程中的三个平面、半球和半球拉伸阶段的示意图图 (a)和(b)描述了由天然橡胶、丁腈橡胶和乳胶三种不同材料制成的气球型机器人的输出性能特征示意图。
2025-06-20 08:53:28
547
原创 Science Robotics期刊论文:腿式机械臂学习羽毛球技能
摘要:苏黎世联邦理工学院研究团队开发了一套基于强化学习的控制系统,使腿式移动机械臂(ANYmal-D+DynaArm)能够自主进行羽毛球运动。该系统通过非对称Actor-Critic架构,在仅使用单目视觉(60Hz)的条件下,实现了最高12.06m/s的挥拍速度和平均0.654秒的反应时间,中心区域击球成功率高达98.7%。研究突破了传统机器人控制方法的局限,展现了自发战术行为(如自动回位)和自适应步态调整能力。尽管存在高弧线球处理(成功率<65%)和光照敏感等局限,该技术为动态环境下的机器人控制提供
2025-06-19 08:45:10
378
原创 浙大控制学院熊蓉团队在IJRR上发表最新研究成果
浙江大学熊蓉教授团队在连续体机器人控制领域取得重要突破,提出驱动器空间最优路径跟踪框架。该研究针对连续体机器人运动学建模困难、规划算法不完善等问题,开发了高效逆运动学求解器和驱动空间轨迹规划器,实现了执行距离和时间分配双优化。实验表明,新方法将求解效率提升80%,跟踪误差降低50-80%。研究成果发表于机器人领域顶刊IJRR,为连续体机器人在医疗、抓取等场景的应用提供了更安全高效的控制方案。
2025-06-18 10:34:29
534
原创 TRO 2025 | 伦敦国王学院罗山教授团队发布触觉操作机器人RoTipBot:机器人也能翻书!
伦敦国王学院罗山团队联合北京理工大学与莫纳什大学,研发了全球首个基于可旋转触觉传感器的机器人平台RoTipBot,实现了多层薄柔物体的智能计数与高效抓取。该研究针对薄柔物体易弯曲、叠层难检测等挑战,创新设计了全向感知结合主动旋转的RoTip传感器,通过双指同步滚动将多层物体卷入指间,成功率超越现有方法3倍,并在300人公开演示中验证了可靠性。论文发表于IEEE TRO期刊,通讯作者罗山教授是触觉机器人领域国际权威,第一作者江佳齐现为北京理工大学助理教授,团队招生博士后与研究生。
2025-06-17 08:58:20
281
原创 IEEE TRO 刚柔耦合结构 + 捏吸混合机制,赋能多模态抓手实现通用性抓取
机器人抓手的通用性抓取能力研究取得新突破。中山大学与华中科技大学团队研发的混合多模式抓手(HMG)通过融合捏-吸混合抓取机制与刚-柔耦合结构,实现了对0.2g羽毛至10kg哑铃、0.46mm茶叶至0.55m瑜伽球的广泛抓取范围。该抓手具备四种操作模式,能适应易碎物品、不规则形状物体及动态环境,并展示了在水下作业、流水线操作等场景的应用潜力。相关成果发表于机器人领域顶刊IEEE Transactions on Robotics,为高性能机器人抓手设计提供了新思路。
2025-06-16 06:04:06
803
原创 Science 正刊:脊髓损伤患者的复杂触觉离现实又近了一步
脊髓损伤患者迈向复杂触觉感知新突破。《科学》杂志最新研究显示,美国皮质仿生学研究团队通过大脑植入电极的微刺激技术,首次实现让瘫痪患者用仿生手感知物体的边缘、形状和运动。该技术结合脑机接口(BCI),使参与者不仅能控制仿生肢体,还能获得接近自然手的触觉反馈,显著提升操作精度。研究负责人Giacomo Valle指出,这种高维度触觉体验是迈向灵巧操控的关键突破。虽然现有技术仍需改进传感器和刺激系统,但该成果为神经义肢发展开辟了新方向。该研究部分系统正由美国公司商业化开发,同时欧洲也正筹建相关研究中心。
2025-06-15 12:26:53
539
原创 Nature Machine Intelligence 北京通研院朱松纯团队开发视触觉传感仿人灵巧手,实现类人自适应抓取
朱松纯教授团队研发的F-TAC Hand仿生机械手取得突破性进展。该机械手通过创新性设计实现了70%表面积的高分辨率触觉覆盖(0.1毫米空间分辨率),集成了17个基于视觉的触觉传感器。研究采用生成算法模拟人类手部动作,结合触觉反馈实现精准抓取控制。600次实验验证其在动态环境中明显优于传统方案(P<0.0001)。该成果发表于Nature Machine Intelligence,为具身智能发展提供了新思路,展现了触觉反馈在机器人智能中的关键作用。
2025-06-14 20:51:49
403
原创 斯坦福大学和哥伦比亚大学联合开发的以人手为灵巧操作通用接口的突破性研究——DexUMI
《DexUMI:以人手为通用接口实现灵巧操作》研究摘要 斯坦福大学等机构联合开发的DexUMI框架实现了机器人从人类手部动作中学习复杂操作技能的突破。该研究通过硬件(可定制手部外骨骼)和软件(视觉适配管道)双重适配,有效缩小了人类与机器人手之间的动作差异。实验证明,在6自由度和12自由度机械手上,该方法数据收集效率达传统远程操作的3.2倍,平均任务成功率86%,尤其擅长多指接触的复杂操作。DexUMI为机器人灵巧操作提供了一种高效、可扩展的学习框架,开辟了超越传统远程操作的新途径。
2025-06-13 09:19:10
340
原创 港中文最新!FiS:突破机器人操控瓶颈,让机器人兼具快速执行与深度推理能力
摘要:***中文大学、北京大学等机构联合提出Fast-in-Slow(FiS)双系统机器人控制模型,创新性地将高频执行系统(System 1)嵌入慢速推理系统(System 2)中。该模型基于视觉语言模型(VLM)构建,System 2负责语义推理(1/4频率),System 1复用其参数实现117.7Hz的高频动作生成。通过异步协同机制和扩散模型训练,FiS在RLBench测试中成功率提升8-14%,控制频率达21.9Hz,并在真实机器人任务中展现优异的泛化能力。这一突破解决了机器人操控中速度与精度的平衡
2025-06-12 09:16:37
557
原创 IEEE TRO 普渡大学--未知杂乱环境中的机器人主动神经传感与规划
我们的框架主动从给定的视点收集视觉RGBD观察结果,将其注册到场景表示中,并从其部分观察结果中推断出未知的物体形状,以避免在场景重建过程中机器人与给定环境的不必要交互。6) 一个统一的快速主动传感框架,结合了视点生成和机器人控制方法,用于场景构建,其结果在复杂的模拟和现实世界的橱柜式环境中使用带有手持RGBD相机的6自由度机械手进行了演示。1)基于3DCNN的评分函数,该函数基于过去的观察和视点候选进行场景表示,以预测可能的场景覆盖范围,从而指导视点规划,防止与给定环境的不必要的机器人交互。
2025-06-11 09:11:42
736
原创 Information Fusion期刊发表:Touch100k用语言解锁触觉感知新维度
基于视觉的触觉传感数据通常以触觉图像和视觉图像的形式呈现,相关研究主要聚焦于触觉与视觉模态的融合,而对语言模态的探索往往仅限于为传感数据附加类别标签。北京交通大学计算机学院联合北京邮电大学人工智能学院方斌教授团队、腾讯微信AI团队发布了首个大规模触觉、多粒度语言、视觉三模态数据集Touch100k,并提出TLV-Link预训练方法,为材料属性识别和抓取预测任务提供了高效的触觉表示能力,特别是在零样本触觉理解方面取得显著进展,为触觉领域注入了新的活力。图 3 触觉表征的多模态联合学习方法TLV-Link。
2025-06-10 08:43:21
905
原创 RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
我们在 102 本真实宜家家具说明书上测试了我们提出的层级化装配图生成方法的表现,可以看出,对于简单和中等复杂程度的家具(部件数 ≤ 6),我们的方法能比较准确地生成装配图,同时在所有复杂程度的家具上,我们的方法表现均显著优于基线方法。位姿回归器(R):从融合特征预测各部件的 SE(3) 位姿。与过往方法通常一次预测整个装配过程中所有零件的位姿不同,这里我们对每个装配步骤,预测这一步中涉及到的所有部件/子组件的位姿,这一设置既更贴合真实世界中的拼装过程,也能使模型避免单次输入部件数量过多引起的性能下降。
2025-06-09 09:15:02
1046
原创 Science Robotics:UCLA 贺曦敏团队综述自主软体机器人
这些策略展示了在不依赖复杂电子控制的条件下,通过材料-结构-环境的耦合设计实现类生命体的持续运动能力。此外,文章进一步总结了基于 API实现的自持续运动在多种环境中的表现形式,包括陆地运动(如行走、爬行、翻转、滚动、跳跃)水中运动(如波动、振荡、漂浮、脉动)、潜在的空中运动(如拍翼旋转、飘浮)、以及多环境下多模态运动。作者还指出,为实现真正的系统级自主软体机器人,未来需重点发展若干关键方向,包括:扩大尺寸以突破微型尺寸的限制、能量获取与利用、群体行为、多功能集成,以及建模与仿真。
2025-06-06 16:26:16
1190
原创 科普系列:大数据模型在多情境下的的训练过程及储存内容
《大模型训练与应用全景指南》系统阐述了大模型从训练到部署的全流程。训练过程包括数据收集与预处理(TB级文本清洗、分词)、Transformer架构设计(12-100层)、分布式训练(数据/模型并行)及优化策略(AdamW、混合精度)。模型保存内容包括核心权重(注意力机制参数)、架构信息(层数/维度)及训练状态(优化器缓存)。应用部署阶段需考虑硬件适配(GPU/TPU)、模型轻量化(量化/剪枝)和服务框架(vLLM),同时强调持续学习机制(增量训练)与伦理风险管控。该指南揭示了AI大模型作为"数字生
2025-06-05 09:18:39
515
原创 冷雨泉教授团队:新型视觉驱动智能假肢手,拟人化抓握技术突破,助力截肢者重获生活自信
摘要:哈尔滨工业大学等团队研发了一种新型视觉驱动动力假手系统,通过动态手势建模和智能意图预测技术提升假肢拟人化水平。系统采用头戴摄像头捕捉手物交互数据,结合3D重建和手势映射算法构建可扩展的手势模型库,并创新性地提出基于运动轨迹回归的意图识别方法。实验表明,该系统单物体抓取成功率达95.43%,动作相似度0.911,多物体意图识别准确率94.35%,显著优于传统控制方式。该研究为假肢手的自然化操作提供了新思路,有望改善截肢患者的日常生活质量。相关成果发表在IEEE TNSRE期刊。
2025-06-03 10:27:26
1146
原创 Advanced Materials 自然界的播种大师,仿燕麦芒刺的微型播种机器人
科学家受野生燕麦种子湿度驱动运动的启发,开发出新型生物混合微型机器人HybriBot。该机器人通过3D打印复刻燕麦果实结构,利用天然芒刺作为生物马达,能在土壤中自主移动并精准播种。实验显示其钻土能力达0.38N阻力、100mN·mm⁻¹扭矩,成功培育番茄幼苗。这项发表于《Advanced Materials》的研究,为生态修复和精准农业提供了创新解决方案,未来或可实现无人机批量投放进行荒漠化治理和智能耕作。机器人完成任务后可完全降解,兼具高效性与环保性。
2025-06-02 12:59:48
592
原创 ICML 2025 Spotlight | 机器人界的「Sora」!让机器人实时进行未来预测和动作执行!
本文提出视频预测策略(VPP),一种利用视频扩散模型(VDM)预测性视觉表征的通用机器人策略。该方法通过两阶段学习:首先微调文本引导视频预测模型以提升操作领域预测能力,随后基于其内部表征学习逆动力学模型。实验表明,VPP在Calvin基准测试中相对性能提升18.6%,在现实灵巧操作任务中成功率提高31.6%。该研究揭示了视频生成模型在具身任务中的潜力,为开发更智能的机器人策略提供了新思路。
2025-05-31 15:29:05
626
原创 Science Advances 上海理工大学与美国杜克大学(Duke University)共同开发了一种仿生复眼相机
科学家研发出新型AI辅助仿生复眼相机,灵感来自节肢动物5亿年进化的视觉系统。该相机由上海理工大学与杜克大学合作开发,采用165°广角设计,实现40微米分辨率的全彩全景成像。通过3D打印技术和特殊光学元件,相机克服了传统仿生复眼像素不足的问题,能同时追踪多个目标并精确重建图像。研究团队模拟生物神经网络开发的三阶段视觉处理模型,在目标识别、形状重建和信息提取方面表现优异,相似度高达95.2%。这项突破性技术有望应用于监控、机器人导航和医疗诊断领域,相关成果发表于《Science Advances》期刊。
2025-05-30 13:58:28
1099
原创 RSS 2025|96.3%成功率!中科院提出ConRFT:让机器人灵活穿针,强化学习微调!
本文提出ConRFT方法,解决机器人VLA模型微调中的数据局限问题。该方法通过离线阶段的Cal-ConRFT结合行为克隆和Q学习,从少量演示数据中稳定提取策略;在线阶段的HIL-ConRFT引入人类干预机制,保障安全探索。实验表明,ConRFT在8项真实任务中平均成功率高达96.3%,任务完成步数减少1.9倍,显著优于传统方法。该方法为VLA模型在机器人操作中的高效安全应用提供了新思路,但仍存在对奖励设计敏感等问题,未来可进一步优化。
2025-05-28 10:21:14
355
原创 Science Robotics 具身智能驱动的空中物理交互新范式:结合形态和传感,与非结构化环境进行稳健交互
本文提出"具身空中物理交互(E-APhi)"创新框架,通过仿生柔性形态、分布式触觉感知与简约控制策略的协同设计,突破传统无人机物理交互的三大局限:1)环境适应性差,2)动态响应慢,3)系统复杂度高。该框架实现3.0 m/s高速交互,接触响应时间<0.1秒,在非结构化环境中展现出95%的任务成功率,较传统方法提升3倍以上。实验验证了其在环境DNA采样、工业检测等场景的高效性,为无人机在复杂环境中的自主交互提供了新范式。这一成果将推动具身智能与机器人技术的深度融合。
2025-05-26 10:30:46
1059
原创 Science Robotics|仿生章鱼机器人问世:流体智能分级操控,抓豆腐、测触感全自动
英国布里斯托大学与南方科技大学的研究团队联合开发了一款仿生章鱼机器人,成功复刻了章鱼触手的灵活性和感知能力。该机器人通过气流和硅胶吸盘实现零损伤抓取、自适应包裹和触感识别等高难度操作,无需复杂电路。其设计借鉴了章鱼的神经肌肉结构,利用吸盘、软计算元件和软致动器的流体能量与信息容量,实现了分级智能和自主决策。这一技术突破不仅提高了机器人的响应速度和适应性,还降低了生产成本,为工业抓取和医疗操作等场景提供了新思路。
2025-05-23 10:58:03
948
原创 王耀南院士团队 | AI大模型驱动的具身智能人形机器人技术与展望
王耀南院士团队探讨了AI大模型驱动的具身智能人形机器人技术的发展与展望。文章首先回顾了人形机器人的发展历程,从机械自动化到人工智能集成,强调了人形机器人在社会、经济和军事领域的重要性。随着大模型技术的进步,人形机器人在语言理解、视觉泛化和常识推理等方面取得了显著进展。文章还分析了国内外政策背景,指出各国政府对人形机器人技术的高度重视和投资。最后,文章探讨了通用大模型技术在人形机器人中的核心作用,特别是大型自然语言模型和视觉Transformer模型的应用,这些技术显著提升了人形机器人的智能化水平和任务执行能
2025-05-21 11:14:38
936
原创 Nature Materials:智能触觉皮肤!
成均馆大学Nae-Eung Lee团队开发了一种新型人工突触机械感受器(ASMR)阵列,该阵列通过整合慢速和快速适应神经机制,模拟人类皮肤的触觉感知系统。ASMR阵列采用微图案化的摩擦电传感层与离子凝胶门控还原氧化石墨烯(rGO)突触晶体管垂直整合的设计,实现了对16种材料纹理的高精度识别,仅使用10.6%的数据就达到了92.3%的准确率。这种设计显著降低了数据负担,提高了边缘AI应用中的识别效率。该研究通过仿生双模式触觉感知策略,解决了传统电子皮肤在动态或静态触觉信号采集中的数据不足问题,为智能机器人在精
2025-05-20 11:29:37
343
原创 ICRA 2024 PROGrasp——实用的人机交互物体抓取系统
在机器人抓取任务中,自然语言理解技术的应用显著提升了人机交互的体验。然而,现有系统通常要求用户明确指定目标对象,限制了交互的自然性。为此,我们提出了PROGrasp系统,该系统结合自然语言处理、视觉识别和强化学习技术,旨在通过理解用户的模糊指令来执行抓取任务。PROGrasp的核心创新包括自然语言意图识别、视觉定位与对象识别的结合,以及基于强化学习的策略优化。实验结果显示,PROGrasp在处理复杂指令和适应新环境方面表现出色,抓取成功率高达94.1%。未来,我们计划进一步扩展系统的功能,以支持更多类型的指
2025-05-19 10:04:33
673
原创 Science Robotics 封面论文:基于形态学开放式参数化的仿人灵巧手设计用于具身操作
瑞士洛桑联邦理工学院和英国剑桥大学的研究团队提出了一种创新的“开放参数化手”(OPH)设计框架,通过56个可调参数,能够定制从人手到各种灵长类动物手爪,甚至创造出自然界不存在的手型,如双拇指手。这一设计不仅制造简单(单件3D打印、低自由度控制),还能实现复杂的操作行为。研究展示了不同形态手掌的独特优势,如标准人手的多功能性、双拇指手的多点操作能力以及指猴手在狭窄空间中的操作优势。这一设计不仅有助于理解手部形态与功能的关系,还为未来定制化机器手的发展提供了新思路。研究团队已将源代码和设计文件开源,供进一步开发
2025-05-18 19:45:31
527
原创 CVPR 2025新研究解决AI生成3D模型“不可编辑”痛点
魔芯科技、新加坡南洋理工大学等机构的研究人员提出了名为CADCrafter的新框架,能够直接从单张图像生成可编辑的CAD工程文件。与传统的图生3D方法不同,CADCrafter能够处理零件渲染图、3D打印零件照片甚至日常生活中的物体,生成对应的原始CAD文件,并通过CAD编译器编译成可直接用于生产的3D文件。该框架采用了两阶段生成架构,结合了变分自编码器(VAE)和扩散模型,并通过蒸馏策略和代码检查机制提升了生成质量和可编译性。实验表明,CADCrafter在细节还原度和实用性上优于现有方法,展示了其在工业
2025-05-16 08:10:47
356
原创 面向具身智能的视觉-语言-动作模型(VLA)综述
具身智能作为通用人工智能(AGI)的关键要素,通过控制智能体在物理世界中执行任务,推动了视觉语言动作模型(VLA)的发展。VLA结合视觉、语言和动作模态,解决了语言条件机器人任务,展现出在复杂环境中的多样性和泛化能力。文章首次对VLA进行了系统调查,将其分为三条研究路线:组件优化、低级动作预测和高级任务规划。VLA依赖于视觉编码器、语言编码器和动作解码器,利用大语言模型和视觉基础模型进行多模态处理。文章还总结了相关资源,如数据集和基准,并讨论了VLA面临的挑战及未来方向。VLA的发展为具身智能提供了新的研究
2025-05-14 10:42:18
1001
原创 Science正刊 用一根软管造就史上最简单的软机器人!
研究人员开发了一种新型软体机器人,其设计灵感来源于喷水软管和充气跳舞人。这种机器人通过简单的硅胶软管和3D打印支架制成,能够在注入恒定气流后实现高速摆动,频率可达每秒100次,模仿动物四肢的周期性动作。此外,通过调整软肢之间的连接管长度,研究人员实现了两种步态:同步和交替运动,使机器人能够以每秒1.1米的速度奔跑。进一步优化后,机器人仅需0.1升/分钟的气流即可运行,并能在不同环境中自动调整运动模式,如从陆地到水中的步态切换。这种设计不仅提高了机器人的速度和效率,还增强了其环境适应能力,为软体机器人的未来发
2025-05-13 10:00:36
316
原创 IEEE TRO 北理工团队研制的多飞行器集联操作平台,仅依赖机载传感器完成多种复杂空中操作任务
飞行操作型机器人是机器人领域的新兴研究方向,它使飞行机器人从仅观察环境发展为具备与环境交互的能力,提升了传统操作型机器人的机动性和活动范围。然而,微小型飞行器由于欠驱动方式和负载限制,难以满足复杂操作需求。北京理工大学俞玉树团队创新设计多飞行器集联平台,通过组合多个飞行器模块,实现六维全向驱动力,提升操作灵活性和力输出。团队在IEEE Transactions on Robotics上发表研究成果,提出了一种仅依赖机载传感器的多机集联飞行平台(IAP)控制和状态估计框架,成功验证了其在目标跟踪、地图构建和六
2025-05-12 10:16:52
924
原创 机器人运动控制原理浅析-UC Berkeley超视觉模态模型
加州伯克利开发的超视觉多感知模态融合(FuSe)模型,通过整合视觉、触觉、听觉、本体及语言等多种感知模态,利用自然语言跨模态对齐技术优化视觉语言动作模型,显著提升了任务执行的成功率。该模型基于预训练的Octo或PaliGemma模型,结合机器人视角相机、触觉传感器、麦克风等硬件设备,通过多模态对比损失、语言生成损失及动作损失进行优化,实现对自然语言指令或图像目标任务的精确执行。模型训练采用Google的JAX框架,利用TPU进行高效计算,同时引入了新型触觉传感器DIGIT,增强了触觉感知的精度和范围。整体框
2025-05-11 22:28:09
882
原创 Taccel:一个高性能的GPU加速视触觉机器人模拟平台
Taccel是一款高性能的视觉触觉机器人模拟平台,旨在解决视觉触觉传感器(VBTS)在机器人应用中的模拟难题。通过集成增量势能接触(IPC)和自适应动力学(ABD)技术,Taccel实现了高精度的物理模拟和触觉信号生成,支持超过实时18倍的模拟速度,并在数千个并行环境中运行。该平台在物体识别、机器人抓取和关节物体操作等任务中表现出色,生成的触觉信号与真实数据高度一致,且无需领域适应即可迁移到真实场景。Taccel的用户友好API和高效并行化能力使其成为触觉机器人研究的强大工具,有望加速智能机器人系统的开发。
2025-05-10 13:42:12
955
原创 触觉假肢手的多功能共享控制策略,助力断肢患者实现“一次多抓”及“柔性物体操作-挤牙膏”等任务
触觉假肢手的多功能共享控制策略,助力断肢患者实现“一次多抓”及“柔性物体操作-挤牙膏”等任务
2025-05-09 10:22:35
306
原创 Advanced Materials 章鱼触手启发的边缘智能触摸意图识别的传感器内自适应积分
图5基于RAI手套的可穿戴摩斯密码识别应用总结与展望研究者们研究了一种可穿戴、高度可拉伸、可重构和自适应的智能触摸传感器(RAI触摸传感器),它利用多点触摸计算来实现传感器内自适应学习和人机交互的实时推理。总体而言,本研究为下一代软电子产品的高性能、可拉伸、可重构和自适应智能传感系统的开发提供了一个基础平台,并展示了传感器内计算策略的突破,为未来的人机技术设备平台铺平了道路。重要的是,通过巧妙地设计触摸点和可拉伸的螺纹变形形式,RAI触摸传感器实现了前所未有的高度可拉伸的多点触摸结构。
2025-05-08 08:49:18
597
原创 IEEE TRO 英伟达公司提出TacSL——面向视触觉传感仿真与学习的开源库
背景:触觉传感器仿真的挑战触觉传感器在接触丰富的机器人操作任务中至关重要,但相关研究面临三大核心挑战:1、信号生成与仿真的复杂性:触觉传感器涉及接触力学、大变形、光照成像等多物理场耦合,传统有限元方法计算成本高昂,难以实现实时仿真。结论TacSL通过GPU加速的触觉传感器模拟和高效的策略学习工具,显著提升了触觉图像和力场模拟的速度,并结合AACD算法优化了高维输入下的策略学习性能,最终实现了从仿真到现实的零样本策略迁移。未来,我们计划进一步扩展TacSL的功能,支持更多类型的触觉传感器和更复杂的操作任务。
2025-05-07 09:45:50
890
原创 Nature Communications 自定义触觉让瘫痪患者“摸”出猫咪和苹果的感觉
但问题是,这种感觉通常很模糊,只像是“电流通过手指”那种轻微的麻麻的刺痛感,不管你是在“摸”猫、钥匙、还是苹果,感觉都差不多。c:每一个刺激电极唤起的感觉的确切位置(在手的图像上以不同的颜色显示)对每个参与者来说都是不同的,这取决于刺激阵列在他们的体感皮层中的位置;这项研究让我们看到:未来的假肢不再只是“能动”,还可能“有感觉”,而且这种感觉不是千篇一律的,而是个性化、可以调节的——就像真的身体一样。想象一下,未来的某天,一个佩戴神经义肢的人,能像我们一样轻轻抚摸一只猫,感受到它柔软的毛发和温暖的体温。
2025-05-06 10:14:13
298
原创 康奈尔大学新突破!代码数据集全开源:你的动作已被机器人破解
以人类演示作为提示,是机器人执行长视域操作任务的有效方法。通过利用合成数据与真实数据进行交替训练,策略网络逐渐学会区分“动作细节”与“任务本质”,从而泛化到未见过的动作方式:无论人类是用单手还是双手、快速还是慢速操作,只要任务目标相同,机器人就能生成适配自身形态的动作序列。如Fig. 3和Fig. 4所示,论文还可视化了真实场景与仿真场景的人机图像嵌入,验证了不同任务的嵌入明显分离,展示了人类与机器人动作在语义空间的高度对齐,突出了RHyME的核心创新在于任务级语义对齐,而非传统的逐帧动作模仿。
2025-05-05 20:42:25
473
原创 Nature Reviews Methods Primers 三维(3D)生物打印综述 CAAI认知系统与信息处理专委会 2025年04月30日 09:56 北京
液滴式生物打印概述液滴式生物打印是一种基于控制液滴生成和排放的技术,通过精确控制生物墨水的体积和细胞位置,逐层构建具有复杂结构的三维生物体。此外,目前液滴式生物打印的商用平台仍然存在一定的限制,特别是在生物墨水的选择、打印速度和可扩展性等方面,还需要进一步的技术突破。液滴式生物打印的工作原理液滴式生物打印的基本原理是通过喷嘴排放微米级别的液滴,这些液滴可以通过不同的方式(如热驱动、压电驱动、静电驱动等)形成,并按照预设的模式精准地沉积到基底上,从而实现三维结构的构建。图7:液滴式生物打印的应用领域。
2025-05-04 10:40:11
553
原创 Nature正刊:新型折纸启发手性超材料,实现多模式独立驱动,变形超50%!
经典的结构化晶胞,例如以拉伸为主的八面体桁架单元和以弯曲为主的开尔文晶格,已在诸多应用领域中得到探索,包括超轻系统、极端能量耗散和晶格断裂表征。相比之下,可重构组件,例如受折纸和剪纸启发的超材料,将运动扩展为有限变形,适用于涉及形状变形的应用。2. 通过实验和模拟,表明该组件的变形包括由旋转方形镶嵌主导的平面内扭转和收缩,以及由管状Kresling折纸阵列主导的平面外收缩。右图,偶极子储存的能量与位移的关系。d-o,由同一组模块单元构成的各种组件配置,对应的稳定状态、测得的载荷-位移曲线和相应的能量图。
2025-05-03 15:34:54
588
原创 ICRA 2025 基于触觉反馈的闭环分层控制框架——开放环境下通用门开启的智能规划与操作
1、野外环境门开启测试我们在8栋校园建筑的20种未见门(含5种特殊机械锁)上进行了420次测试,实现了90%的总体成功率,较Gemini+VLM基线(50%)提升40%。未来,我们计划扩展至多机器人协作开门、非刚性门(如布帘)操作等场景,并探索触觉反馈与强化学习的深度融合,进一步提升开放世界的适应性。3、低成本触觉反馈实现在硬件受限的条件下,我们验证了关节电流信号的可靠性。虽然大语言模型和视觉语言模型被用于高层规划,但仍依赖视觉数据和预定义模型,难以适应非视觉属性的变化,比如门的内部机制、意外阻力等情况。
2025-05-02 12:49:51
937
原创 TactileNet 利用 AI 生成触觉图形填补视障人士无障碍鸿沟
在推理过程中,系统支持文本到图像和图像到图像的生成,这种灵活性确保了实际应用的实用性,弥合了触觉设计的不同模态之间的差异。7.结果与讨论文章中做了图像到图像转换评估的结果分析如下:特征对齐:生成图形与自然图像的姿势和核心特征对齐率达100%,优于部分源库图形(如骆驼物种误配导致的 3.57% 错误);本文提出TactileNet,首个全面的数据集和基于 AI 的框架,结合文本到图像的稳定扩散(SD)模型、低秩适应(LoRA)和DreamBooth技术,实现高保真、合规的触觉图形生成。
2025-05-01 11:46:29
643
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人