✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
智能优化算法是一种基于人工智能的算法,旨在解决各种优化问题。近年来,随着人工智能技术的不断发展,智能优化算法在工程、经济、管理等领域得到了广泛的应用。其中,基于三角测量拓扑聚合优化器(TTAO)是一种常用的智能优化算法,用于求解单目标优化问题。
在解决单目标优化问题时,我们通常需要在给定的约束条件下找到一个最优解。传统的优化算法通常是基于梯度的方法,但在某些情况下,这些方法可能会陷入局部最优解,无法找到全局最优解。智能优化算法则通过模拟自然界中的进化过程,利用种群的适应度评估和选择操作,来搜索潜在的解空间,以找到全局最优解。
本文提出了一种新颖的基于数学的元-启发式算法,称为三角拓扑聚合优化器(TTAO),用于解决持续优化和工程应用。该算法的核心是基于数学中的相似三角形拓扑。TTAO算法包含通用聚合和局部聚合两种策略,有助于迭代构造多个相似的三角形拓扑单元,以平衡探索和利用。前者通过不同三角形拓扑单元之间的正向信息交换生成新的顶点。后者根据每个单元的局部最优顶点在有希望的位置构造新的单元。在不同维度和 8 个实际工程问题的 CEC2017 函数上,与一些竞争算法相比,评估了 TTAO 算法的性能。数值结果有效验证了TTAO算法优异的优化性能。
TTAO是一种基于三角测量拓扑聚合的智能优化算法。它通过将问题空间划分为多个三角形,以三角形的拓扑关系来表示解空间中的搜索方向。在算法的每一代中,TTAO通过计算每个解的适应度值,选择适应度较高的个体,并利用拓扑关系进行交叉和变异操作,产生新的解。这样,TTAO能够通过不断迭代的方式,逐步优化搜索空间,最终找到全局最优解。
与其他智能优化算法相比,TTAO具有以下优点:
-
高效性:TTAO利用三角测量拓扑关系来表示解空间,可以减少搜索空间的维度,从而降低了计算复杂度,提高了算法的效率。
-
鲁棒性:TTAO通过选择适应度较高的个体,并进行交叉和变异操作,可以在搜索过程中保持种群的多样性,避免陷入局部最优解。
-
并行性:TTAO可以通过并行计算的方式,同时搜索多个解,从而进一步提高算法的效率。
TTAO在实际应用中已经取得了一定的成果。例如,在电力系统调度问题中,TTAO被用于优化发电机组的出力,以实现电力系统的平衡和稳定。在机器学习中,TTAO被用于优化神经网络的权重和偏置,以提高模型的性能和泛化能力。此外,TTAO还被应用于图像处理、机器人路径规划等领域。
总之,基于三角测量拓扑聚合优化器(TTAO)是一种有效的智能优化算法,用于求解单目标优化问题。通过模拟自然界中的进化过程,TTAO能够在给定的约束条件下,搜索潜在的解空间,找到全局最优解。在实际应用中,TTAO已经展现出了很大的潜力,并在多个领域取得了成功。随着人工智能技术的不断发展,相信TTAO将在未来得到更广泛的应用和研究。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
Zhao, S.、Zhang, T.、Cai, L. 和 Yang, R. (2023)。三角测量拓扑聚合优化器:一种用于工程应用的新颖的基于数学的元启发式算法。专家系统与应用程序,121744。DOI: https: //doi.org/10.1016/j.eswa.2023.121744