✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

路径规划是自动驾驶和机器人导航中的重要问题之一。在复杂的环境中,如城市道路或室内环境,车辆或机器人需要能够规划出平滑且安全的路径。遗传算法和Clothoid曲线是两种常用的方法,用于解决路径规划中的优化问题。本文将介绍基于遗传算法和Clothoid曲线的路径规划方法,并讨论它们在实际应用中的优势和局限性。

遗传算法是一种基于生物进化原理的优化算法,常用于解决复杂的优化问题。在路径规划中,遗传算法可以用来搜索最优路径,以最小化路径长度或最小化路径曲率。遗传算法通过模拟自然选择和遗传变异的过程,不断演化出更优秀的路径解。它可以有效地避免陷入局部最优解,并且适用于多种不同类型的路径规划问题。

Clothoid曲线是一种特殊的数学曲线,具有平滑变化曲率的特性。在路径规划中,Clothoid曲线可以用来连接两个不同曲率的路径段,使得整个路径更加平滑。相比于传统的圆弧或直线段,Clothoid曲线可以更好地适应复杂的道路布局,减小车辆或机器人的转向冲击,提高行驶舒适性和安全性。

基于遗传算法和Clothoid曲线的路径规划方法结合了遗传算法的全局搜索能力和Clothoid曲线的平滑路径特性。首先,遗传算法被用来搜索最优的路径段组合,以最小化路径长度或路径曲率。然后,Clothoid曲线被用来连接不同曲率的路径段,使得整个路径更加平滑。这种方法可以在复杂的环境中找到最优的路径,并且保证路径的平滑性和安全性。

然而,基于遗传算法和Clothoid曲线的路径规划方法也存在一些局限性。首先,遗传算法的计算复杂度较高,需要大量的计算资源和时间。其次,Clothoid曲线的参数化和优化也需要一定的数学知识和技术经验。因此,这种方法并不适用于所有的路径规划问题,特别是对计算资源和技术要求较高的应用场景。

总的来说,基于遗传算法和Clothoid曲线的路径规划方法在自动驾驶和机器人导航中具有重要的应用前景。通过充分发挥遗传算法的全局搜索能力和Clothoid曲线的平滑路径特性,可以实现更加智能和安全的路径规划。然而,我们也需要注意到这种方法的局限性,需要根据具体的应用场景来选择合适的路径规划方法。希望未来能够进一步

📣 部分代码

% ?Rahul Kala, IIIT Allahabad, Creative Commons Attribution-ShareAlike 4.0 International License. 
% The use of this code, its parts and all the materials in the text; creation of derivatives and their publication; and sharing the code publically is permitted without permission. 
% Please cite the work in all materials as: R. Kala (2014) Code for Robot Path Planning using Genetic Algorithms, Indian Institute of Information Technology Allahabad, Available at: http://rkala.in/codes.html

function cost=segmentCost(n,newPos,map)
penalty=10000; % penlaty for infeasible segments in path
dir=atan2(newPos(1)-n(1),newPos(2)-n(2));
prev=n;
cost=0;
if sqrt(sum((n-newPos).^2))>1
    for r=1:0.5:sqrt(sum((n-newPos).^2))
        posCheck=n+r.*[sin(dir) cos(dir)];
        segmentDistance=distanceCost(prev,posCheck);
        if ~(feasiblePoint(ceil(posCheck),map) && feasiblePoint(floor(posCheck),map) && ... 
                feasiblePoint([ceil(posCheck(1)) floor(posCheck(2))],map) && feasiblePoint([floor(posCheck(1)) ceil(posCheck(2))],map))
            % cost is path length outside obstacles with a heavy panelty propotional to the segment of path inside obstacles
            cost=cost+penalty*segmentDistance;
        else
            cost=cost+segmentDistance;
        end
        prev=posCheck;
    end
else
    segmentDistance=sqrt(sum((n-newPos).^2));
    if ~(feasiblePoint(ceil(newPos),map) && feasiblePoint(floor(newPos),map) && ... 
                feasiblePoint([ceil(newPos(1)) floor(newPos(2))],map) && feasiblePoint([floor(newPos(1)) ceil(newPos(2))],map))
            % cost is path length outside obstacles with a heavy panelty propotional to the segment of path inside obstacles
            cost=cost+penalty*segmentDistance;
        else
            cost=cost+segmentDistance;
    end
end

⛳️ 运行结果

【路径规划】基于遗传算法和Clothoid曲线平滑路径规划附Matlab代码_遗传算法

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合