✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要
多聚焦图像融合是一种将不同焦距图像融合成一张清晰图像的技术。它广泛应用于显微成像、医学成像、遥感等领域。基于空间频率的多聚焦图像融合是一种常用的融合方法,它利用图像的空间频率信息来融合图像。本文将介绍基于空间频率的多聚焦图像融合的基本原理、常用方法和应用。
基本原理
基于空间频率的多聚焦图像融合的基本原理是,将不同焦距图像分解成空间频率分量,然后将这些分量进行融合,最后将融合后的分量重构为图像。空间频率分量可以表示图像的纹理和细节信息。不同焦距图像的空间频率分量不同,因此可以利用这些差异来融合图像。
常用方法
基于空间频率的多聚焦图像融合有很多种方法,常用的方法包括:
-
**加权平均法:**这种方法将不同焦距图像的空间频率分量进行加权平均,权重值根据图像的质量和清晰度来确定。
-
**小波变换法:**这种方法将不同焦距图像分解成小波分量,然后将这些分量进行融合,最后将融合后的分量重构为图像。
-
**傅里叶变换法:**这种方法将不同焦距图像分解成傅里叶分量,然后将这些分量进行融合,最后将融合后的分量重构为图像。
应用
基于空间频率的多聚焦图像融合广泛应用于显微成像、医学成像、遥感等领域。在显微成像中,这种方法可以将不同焦距的显微图像融合成一张清晰的图像,从而提高显微图像的质量和分辨率。在医学成像中,这种方法可以将不同焦距的医学图像融合成一张清晰的图像,从而提高医学图像的诊断价值。在遥感中,这种方法可以将不同焦距的遥感图像融合成一张清晰的图像,从而提高遥感图像的质量和分辨率。
📣 部分代码
set(0, 'DefaultAxesFontName', 'Arial');
set(0, 'DefaultTextFontSize', 12);
set(0, 'DefaultTextFontName', 'Arial');
set(0, 'DefaultFigurePaperPositionMode', 'auto');
dirData = 'imgDefinition/';
if ~exist(dirData,'dir'), mkdir(dirData); end
% Input the images
iNo = 1;
A = double(imread(['image/',int2str(iNo),'_a.png']));
B = double(imread(['image/',int2str(iNo),'_b.png']));
m0 = size(A,1);
m1 = size(A,2);
w = 32;
b0 = ceil(m0/w)*w-m0;
b1 = ceil(m1/w)*w-m1;
Ae = A([1:m0, m0-1:-1:m0-b0], [1:m1, m1-1:-1:m1-b1]);
Be = B([1:m0, m0-1:-1:m0-b0], [1:m1, m1-1:-1:m1-b1]);
% Calculate the binary-maping image
%%
Aeb = Ae;
Beb = Be;
for i = 1:ceil(m0/w)
Aeb(i*w,:) = 255;
Beb(i*w,:) = 255;
end
for j = 1:ceil(m1/w)
Aeb(:,j*w) = 255;
Beb(:,j*w) = 255;
end
%%
S1 = zeros(ceil(m0/w),ceil(m1/w));
for i = 1:ceil(m0/w)
for j = 1:ceil(m1/w)
%%%
Win = Ae((i-1)*w+1:i*w, (j-1)*w+1:j*w);
Windh = (Win(2:end,:)-Win(1:end-1,:)).^2;
dh = sum(sum(Windh))/
⛳️ 运行结果
结论
基于空间频率的多聚焦图像融合是一种常用的融合方法,它利用图像的空间频率信息来融合图像。这种方法有很多种,常用的方法包括加权平均法、小波变换法和傅里叶变换法。这种方法广泛应用于显微成像、医学成像、遥感等领域。
🔗 参考文献
S. Li, J. T. Kwok, Y. Wang, Combination of images with diverse focuses using the spatial frequency, Information Fusion, vol. 2, pp. 169-176, 2001