【物理】基于隐式算法进行输气管道瞬模拟附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

​摘要

输气管道瞬态模拟是管道工程设计和运行中的重要内容。本文介绍了一种基于隐式算法的输气管道瞬态模拟方法。该方法采用有限差分法对管道瞬态流动方程进行离散,并使用隐式格式求解离散方程组。该方法具有计算精度高、稳定性好、收敛速度快的优点。

关键词:输气管道、瞬态模拟、隐式算法、有限差分法

1. 引言

输气管道是输送天然气、石油和其他流体的关键基础设施。输气管道在运行过程中,由于各种原因可能会发生瞬态流动,如阀门启闭、泵站启停、管道泄漏等。瞬态流动会对管道产生不利影响,如引起压力波动、流量波动、管道振动等。因此,对输气管道瞬态流动进行模拟分析具有重要意义。

输气管道瞬态模拟方法有很多种,其中基于隐式算法的瞬态模拟方法是一种常用的方法。隐式算法具有计算精度高、稳定性好、收敛速度快的优点,因此在输气管道瞬态模拟中得到了广泛的应用。

2. 基本方程

输气管道瞬态流动方程组包括连续性方程、动量方程和能量方程。连续性方程表示管道中流体的质量守恒,动量方程表示管道中流体的动量守恒,能量方程表示管道中流体的能量守恒。

其中,�ρ为流体密度,�u为流体速度,�p为流体压力,�e为流体单位质量的内能,�f为管道摩擦系数,�D为管道直径。

3. 隐式算法

隐式算法是一种求解偏微分方程组的数值方法。隐式算法的基本思想是将偏微分方程组离散成代数方程组,然后使用迭代法求解代数方程组。

对于输气管道瞬态流动方程组,可以使用有限差分法将其离散成代数方程组。有限差分法的基本思想是将管道划分为若干个小段,然后在每个小段上用代数方程近似表示偏微分方程。

离散后的代数方程组可以表示为:

5. 结论

本文介绍了一种基于隐式算法的输气管道瞬态模拟方法。该方法具有计算精度高、稳定性好、收敛速度快的优点。算例分析表明,该方法能够准确地模拟输气管道系统的瞬态流动过程。

📣 部分代码

%function dingwei()clearclc%质心定位算法for i=1:1:k %k为目标采样点数m=0;sumx=0; %x的坐标累积值sumy=0; %y的坐标累积值  for j=1:1:n  %n为网络节点数    if sqrt(abs(x2(i)-S.xd(j))^2+abs(y2(i)-S.yd(j))^2)<=50 %x2、y2为网络节点坐标,S.xd、S.yd为目标坐标      m=m+1;      sumx=sumx+S.xd(j);      sumy=sumy+S.yd(j);    end  end    T.xd(i)=sumx./m;    avex(i)= T.xd(i); %x的坐标平均值    T.yd(i)=sumy./m;    avey(i)=T.yd(i);  %y的坐标平均值   plot(avex,avey,'.');   hold on;axis([0 1000 0 1000])xlabel('x轴坐标(m)')ylabel('y轴坐标(m)')title('质心定位结果')end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值