✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
输气管道瞬态模拟是管道工程设计和运行中的重要内容。本文介绍了一种基于隐式算法的输气管道瞬态模拟方法。该方法采用有限差分法对管道瞬态流动方程进行离散,并使用隐式格式求解离散方程组。该方法具有计算精度高、稳定性好、收敛速度快的优点。
关键词:输气管道、瞬态模拟、隐式算法、有限差分法
1. 引言
输气管道是输送天然气、石油和其他流体的关键基础设施。输气管道在运行过程中,由于各种原因可能会发生瞬态流动,如阀门启闭、泵站启停、管道泄漏等。瞬态流动会对管道产生不利影响,如引起压力波动、流量波动、管道振动等。因此,对输气管道瞬态流动进行模拟分析具有重要意义。
输气管道瞬态模拟方法有很多种,其中基于隐式算法的瞬态模拟方法是一种常用的方法。隐式算法具有计算精度高、稳定性好、收敛速度快的优点,因此在输气管道瞬态模拟中得到了广泛的应用。
2. 基本方程
输气管道瞬态流动方程组包括连续性方程、动量方程和能量方程。连续性方程表示管道中流体的质量守恒,动量方程表示管道中流体的动量守恒,能量方程表示管道中流体的能量守恒。
其中,�ρ为流体密度,�u为流体速度,�p为流体压力,�e为流体单位质量的内能,�f为管道摩擦系数,�D为管道直径。
3. 隐式算法
隐式算法是一种求解偏微分方程组的数值方法。隐式算法的基本思想是将偏微分方程组离散成代数方程组,然后使用迭代法求解代数方程组。
对于输气管道瞬态流动方程组,可以使用有限差分法将其离散成代数方程组。有限差分法的基本思想是将管道划分为若干个小段,然后在每个小段上用代数方程近似表示偏微分方程。
离散后的代数方程组可以表示为:
5. 结论
本文介绍了一种基于隐式算法的输气管道瞬态模拟方法。该方法具有计算精度高、稳定性好、收敛速度快的优点。算例分析表明,该方法能够准确地模拟输气管道系统的瞬态流动过程。
📣 部分代码
%function dingwei()
clear
clc
%质心定位算法
for i=1:1:k %k为目标采样点数
m=0;
sumx=0; %x的坐标累积值
sumy=0; %y的坐标累积值
for j=1:1:n %n为网络节点数
if sqrt(abs(x2(i)-S.xd(j))^2+abs(y2(i)-S.yd(j))^2)<=50 %x2、y2为网络节点坐标,S.xd、S.yd为目标坐标
m=m+1;
sumx=sumx+S.xd(j);
sumy=sumy+S.yd(j);
end
end
T.xd(i)=sumx./m;
avex(i)= T.xd(i); %x的坐标平均值
T.yd(i)=sumy./m;
avey(i)=T.yd(i); %y的坐标平均值
plot(avex,avey,'.');
hold on;
axis([0 1000 0 1000])
xlabel('x轴坐标(m)')
ylabel('y轴坐标(m)')
title('质心定位结果')
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类