【电力负荷预测】基于鲸鱼算法优化时间卷积网络结合多头注意力机制WOA-TCN-Multihead-Attention实现电力负荷预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

摘要

电力负荷预测在电力系统运行和规划中至关重要。本文提出了一种基于鲸鱼算法优化时间卷积网络结合多头注意力机制(WOA-TCN-Multihead-Attention)的电力负荷预测模型。该模型利用鲸鱼算法优化 TCN 的超参数,并引入多头注意力机制增强模型对长期依赖关系的建模能力。实验结果表明,所提出的模型在多个数据集上取得了优异的预测性能,有效提高了电力负荷预测的精度和鲁棒性。

引言

电力负荷预测是电力系统运行和规划的关键技术,准确的预测可以优化电力调度、提高电网稳定性。传统电力负荷预测方法主要基于统计模型,如自回归积分滑动平均(ARIMA)和灰色预测模型。然而,这些方法对于电力负荷的非线性、非平稳性和高波动性建模能力有限。

近年来,深度学习在电力负荷预测领域取得了显著进展,尤其是时间卷积网络(TCN)因其强大的时间序列建模能力而备受关注。TCN 通过堆叠多个卷积层,可以有效捕捉时间序列中的局部和全局特征。然而,TCN 的预测性能受超参数设置的影响较大,需要进行精细的超参数优化。

此外,电力负荷时间序列通常具有长期依赖关系,传统 TCN 难以充分建模。多头注意力机制是一种自注意力机制,可以并行计算不同子空间的注意力权重,增强模型对长期依赖关系的建模能力。

方法

本文提出的 WOA-TCN-Multihead-Attention 模型包括以下主要模块:

  • **鲸鱼算法优化 TCN 超参数:**鲸鱼算法是一种基于鲸鱼捕食行为的元启发式算法。本文利用鲸鱼算法优化 TCN 的超参数,包括卷积核大小、卷积层数、残差连接层数和 dropout 率。

  • **时间卷积网络:**TCN 由多个卷积层堆叠而成,每个卷积层使用因果卷积核,可以有效捕捉时间序列中的局部和全局特征。

  • **多头注意力机制:**多头注意力机制并行计算不同子空间的注意力权重,增强模型对长期依赖关系的建模能力。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行tic% restoredefaultpath%%  读取数据res = xlsread('数据集.xlsx');%% 划分训练集和测试集%P_train = res(1: 250, 1: 12)';T_train = res(1: 250, 13)';M = size(P_train, 2);P_test = res(251: end, 1: 12)';T_test = res(251: end, 13)';N = size(P_test, 2);num_dim = size(P_train, 1);               % 特征维度num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)                              % 类别数(Excel最后一列放类别)%%  数据转置% P_train = P_train'; P_test = P_test';% T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数M = size(P_train, 2);N = size(P_test , 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test  = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

实验

本文在两个公开数据集(UCI 和 PJM)上评估了所提出的模型。实验结果表明,WOA-TCN-Multihead-Attention 模型在多个评价指标上均取得了优异的预测性能,有效提高了电力负荷预测的精度和鲁棒性。

结论

本文提出了一种基于鲸鱼算法优化时间卷积网络结合多头注意力机制的电力负荷预测模型。该模型利用鲸鱼算法优化 TCN 的超参数,并引入多头注意力机制增强模型对长期依赖关系的建模能力。实验结果表明,所提出的模型在多个数据集上取得了优异的预测性能,有效提高了电力负荷预测的精度和鲁棒性。

🔗 参考文献

[1] 白文超,韩希先,赵禹博,等.基于TCN-A模型的查询负载预测算法及模型:CN202210649569.5[P].CN202210649569.5[2024-02-17].

[2] 张梦琦.基于注意力机制的多变量时间卷积网络股指预测[D].华中师范大学[2024-02-17].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值