✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
电力负荷预测在电力系统运行和规划中至关重要。本文提出了一种基于鲸鱼算法优化时间卷积网络结合多头注意力机制(WOA-TCN-Multihead-Attention)的电力负荷预测模型。该模型利用鲸鱼算法优化 TCN 的超参数,并引入多头注意力机制增强模型对长期依赖关系的建模能力。实验结果表明,所提出的模型在多个数据集上取得了优异的预测性能,有效提高了电力负荷预测的精度和鲁棒性。
引言
电力负荷预测是电力系统运行和规划的关键技术,准确的预测可以优化电力调度、提高电网稳定性。传统电力负荷预测方法主要基于统计模型,如自回归积分滑动平均(ARIMA)和灰色预测模型。然而,这些方法对于电力负荷的非线性、非平稳性和高波动性建模能力有限。
近年来,深度学习在电力负荷预测领域取得了显著进展,尤其是时间卷积网络(TCN)因其强大的时间序列建模能力而备受关注。TCN 通过堆叠多个卷积层,可以有效捕捉时间序列中的局部和全局特征。然而,TCN 的预测性能受超参数设置的影响较大,需要进行精细的超参数优化。
此外,电力负荷时间序列通常具有长期依赖关系,传统 TCN 难以充分建模。多头注意力机制是一种自注意力机制,可以并行计算不同子空间的注意力权重,增强模型对长期依赖关系的建模能力。
方法
本文提出的 WOA-TCN-Multihead-Attention 模型包括以下主要模块:
-
**鲸鱼算法优化 TCN 超参数:**鲸鱼算法是一种基于鲸鱼捕食行为的元启发式算法。本文利用鲸鱼算法优化 TCN 的超参数,包括卷积核大小、卷积层数、残差连接层数和 dropout 率。
-
**时间卷积网络:**TCN 由多个卷积层堆叠而成,每个卷积层使用因果卷积核,可以有效捕捉时间序列中的局部和全局特征。
-
**多头注意力机制:**多头注意力机制并行计算不同子空间的注意力权重,增强模型对长期依赖关系的建模能力。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
tic
% restoredefaultpath
%% 读取数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集%
P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);
P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
num_dim = size(P_train, 1); % 特征维度
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别) % 类别数(Excel最后一列放类别)
%% 数据转置
% P_train = P_train'; P_test = P_test';
% T_train = T_train'; T_test = T_test';
%% 得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
实验
本文在两个公开数据集(UCI 和 PJM)上评估了所提出的模型。实验结果表明,WOA-TCN-Multihead-Attention 模型在多个评价指标上均取得了优异的预测性能,有效提高了电力负荷预测的精度和鲁棒性。
结论
本文提出了一种基于鲸鱼算法优化时间卷积网络结合多头注意力机制的电力负荷预测模型。该模型利用鲸鱼算法优化 TCN 的超参数,并引入多头注意力机制增强模型对长期依赖关系的建模能力。实验结果表明,所提出的模型在多个数据集上取得了优异的预测性能,有效提高了电力负荷预测的精度和鲁棒性。
🔗 参考文献
[1] 白文超,韩希先,赵禹博,等.基于TCN-A模型的查询负载预测算法及模型:CN202210649569.5[P].CN202210649569.5[2024-02-17].
[2] 张梦琦.基于注意力机制的多变量时间卷积网络股指预测[D].华中师范大学[2024-02-17].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类