【DVHOP定位】基于粒子群算法优化多通信半径与跳距加权DV-HOP定位附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

DV-HOP(Distance Vector-Hop)是一种经典的无线传感器网络(WSN)定位算法,其通过测量节点之间的跳数和已知信标节点的位置来估计未知节点的位置。然而,传统的 DV-HOP 算法存在通信半径不确定和跳距权重固定的问题,这会影响定位精度。本文提出了一种基于粒子群算法(PSO)优化多通信半径和跳距加权的 DV-HOP 定位算法。该算法通过引入多个通信半径和动态调整跳距权重,提高了定位精度。

引言

WSN 中的定位技术对于各种应用至关重要,例如环境监测、资产跟踪和人员定位。DV-HOP 算法是一种广泛使用的 WSN 定位算法,其优点是计算简单、定位速度快。然而,传统的 DV-HOP 算法存在以下问题:

  • **通信半径不确定:**节点的通信半径受环境因素的影响,如障碍物和信道衰落,这会导致定位误差。

  • **跳距权重固定:**传统的 DV-HOP 算法将所有跳距的权重设置为相等,这忽略了节点之间的距离差异,影响了定位精度。

优化 DV-HOP 算法

为了解决上述问题,本文提出了一种基于 PSO 优化多通信半径和跳距加权的 DV-HOP 定位算法。该算法的主要改进如下:

1. 多通信半径:

引入多个通信半径,以适应不同环境下的节点通信范围。通过 PSO 优化,为每个节点分配最合适的通信半径。

2. 跳距加权:

根据节点之间的距离差异,动态调整跳距权重。权重较大的跳距对定位结果的影响更大。

粒子群算法(PSO)

PSO 是一种群体智能优化算法,其灵感来自于鸟群或鱼群的群体行为。在 PSO 中,每个粒子代表一个潜在的解决方案,其位置和速度不断更新,以寻找最优解。

算法流程

该算法的流程如下:

  1. 初始化粒子群,每个粒子代表一组通信半径和跳距权重。

  2. 计算每个粒子的适应度,即定位误差。

  3. 更新每个粒子的位置和速度,根据其自身最佳位置和全局最佳位置。

  4. 重复步骤 2 和 3,直到达到终止条件。

  5. 输出具有最佳适应度的粒子,即最优的通信半径和跳距权重。

仿真实验

为了验证该算法的有效性,进行了仿真实验。实验结果表明,与传统的 DV-HOP 算法相比,该算法在不同环境下均能显著提高定位精度。

结论

本文提出了一种基于 PSO 优化多通信半径和跳距加权的 DV-HOP 定位算法。该算法通过引入多个通信半径和动态调整跳距权重,提高了定位精度。仿真实验结果表明,该算法在不同环境下均能有效提高定位精度,具有较好的鲁棒性和适用性。

📣 部分代码

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  DV-Hop算法  ~~~~~~~~~~~~~~~~~~~~~~~~%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% BorderLength-----正方形区域的边长,单位:m% NodeAmount-------网络节点的个数% BeaconAmount---信标节点数% Sxy--------------用于存储节点的序号,横坐标,纵坐标的矩阵%Beacon----------信标节点坐标矩阵;BeaconAmount*BeaconAmount%UN-------------未知节点坐标矩阵;2*UNAmount% Distance------未知节点到信标节点距离矩阵;2*BeaconAmount%h---------------节点间初始跳数矩阵%X---------------节点估计坐标初始矩阵,X=[x,y]'% R------------------节点的通信距离,一般为10-100mclear,close all;BorderLength=100;NodeAmount=100;BeaconAmount=20;UNAmount=NodeAmount-BeaconAmount;R=50;   % D=zeros(NodeAmount,NodeAmount);%未知节电到信标节点距离初始矩阵;BeaconAmount行NodeAmount列h=zeros(NodeAmount,NodeAmount);%初始跳数为0;BeaconAmount行NodeAmount列X=zeros(2,UNAmount);%节点估计坐标初始矩阵%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~在正方形区域内产生均匀分布的随机拓扑~~~~~~~~~~~~~~~~~~~~C=-50+BorderLength.*rand(2,NodeAmount);%生成随机坐标%带逻辑号的节点坐标Sxy=[(1:NodeAmount);C];Beacon=[Sxy(2,1:BeaconAmount);Sxy(3,1:BeaconAmount)];%信标节点坐标UN=[Sxy(2,(BeaconAmount+1):NodeAmount);Sxy(3,(BeaconAmount+1):NodeAmount)];%未知节点坐标%画出节点分布图plot(Sxy(2,1:BeaconAmount),Sxy(3,1:BeaconAmount),'r*',Sxy(2,(BeaconAmount+1):NodeAmount),Sxy(3,(BeaconAmount+1):NodeAmount),'k.')xlim([5-0,BorderLength/2]);ylim([-50,BorderLength/2]);title('* 红色信标节点 . 黑色未知节点')%~~~~~~~~~~~~~~~~~~~~~~~~~~~~初始化节点间距离、跳数矩阵~~~~~~~~~~~~~~~~~~~~~~for i=1:NodeAmount    for j=1:NodeAmount        Dall(i,j)=((Sxy(2,i)-Sxy(2,j))^2+(Sxy(3,i)-Sxy(3,j))^2)^0.5;%所有节点间相互距离        if (Dall(i,j)<=R)&&(Dall(i,j)>0)            h(i,j)=1;%初始跳数矩阵        elseif i==j            h(i,j)=0;        else h(i,j)=inf;        end    endend%~~~~~~~~~~~~~~~~~~~~~~~~~最短路经算法计算节点间跳数~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~for k=1:NodeAmount    for i=1:NodeAmount        for j=1:NodeAmount            if h(i,k)+h(k,j)<h(i,j)%min(h(i,j),h(i,k)+h(k,j))                h(i,j)=h(i,k)+h(k,j);            end        end    endend

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值