✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
DV-HOP(Distance Vector-Hop)是一种经典的无线传感器网络(WSN)定位算法,其通过测量节点之间的跳数和已知信标节点的位置来估计未知节点的位置。然而,传统的 DV-HOP 算法存在通信半径不确定和跳距权重固定的问题,这会影响定位精度。本文提出了一种基于粒子群算法(PSO)优化多通信半径和跳距加权的 DV-HOP 定位算法。该算法通过引入多个通信半径和动态调整跳距权重,提高了定位精度。
引言
WSN 中的定位技术对于各种应用至关重要,例如环境监测、资产跟踪和人员定位。DV-HOP 算法是一种广泛使用的 WSN 定位算法,其优点是计算简单、定位速度快。然而,传统的 DV-HOP 算法存在以下问题:
-
**通信半径不确定:**节点的通信半径受环境因素的影响,如障碍物和信道衰落,这会导致定位误差。
-
**跳距权重固定:**传统的 DV-HOP 算法将所有跳距的权重设置为相等,这忽略了节点之间的距离差异,影响了定位精度。
优化 DV-HOP 算法
为了解决上述问题,本文提出了一种基于 PSO 优化多通信半径和跳距加权的 DV-HOP 定位算法。该算法的主要改进如下:
1. 多通信半径:
引入多个通信半径,以适应不同环境下的节点通信范围。通过 PSO 优化,为每个节点分配最合适的通信半径。
2. 跳距加权:
根据节点之间的距离差异,动态调整跳距权重。权重较大的跳距对定位结果的影响更大。
粒子群算法(PSO)
PSO 是一种群体智能优化算法,其灵感来自于鸟群或鱼群的群体行为。在 PSO 中,每个粒子代表一个潜在的解决方案,其位置和速度不断更新,以寻找最优解。
算法流程
该算法的流程如下:
-
初始化粒子群,每个粒子代表一组通信半径和跳距权重。
-
计算每个粒子的适应度,即定位误差。
-
更新每个粒子的位置和速度,根据其自身最佳位置和全局最佳位置。
-
重复步骤 2 和 3,直到达到终止条件。
-
输出具有最佳适应度的粒子,即最优的通信半径和跳距权重。
仿真实验
为了验证该算法的有效性,进行了仿真实验。实验结果表明,与传统的 DV-HOP 算法相比,该算法在不同环境下均能显著提高定位精度。
结论
本文提出了一种基于 PSO 优化多通信半径和跳距加权的 DV-HOP 定位算法。该算法通过引入多个通信半径和动态调整跳距权重,提高了定位精度。仿真实验结果表明,该算法在不同环境下均能有效提高定位精度,具有较好的鲁棒性和适用性。
📣 部分代码
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DV-Hop算法 ~~~~~~~~~~~~~~~~~~~~~~~~
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% BorderLength-----正方形区域的边长,单位:m
% NodeAmount-------网络节点的个数
% BeaconAmount---信标节点数
% Sxy--------------用于存储节点的序号,横坐标,纵坐标的矩阵
%Beacon----------信标节点坐标矩阵;BeaconAmount*BeaconAmount
%UN-------------未知节点坐标矩阵;2*UNAmount
% Distance------未知节点到信标节点距离矩阵;2*BeaconAmount
%h---------------节点间初始跳数矩阵
%X---------------节点估计坐标初始矩阵,X=[x,y]'
% R------------------节点的通信距离,一般为10-100m
clear,close all;
BorderLength=100;
NodeAmount=100;
BeaconAmount=20;
UNAmount=NodeAmount-BeaconAmount;
R=50;
% D=zeros(NodeAmount,NodeAmount);%未知节电到信标节点距离初始矩阵;BeaconAmount行NodeAmount列
h=zeros(NodeAmount,NodeAmount);%初始跳数为0;BeaconAmount行NodeAmount列
X=zeros(2,UNAmount);%节点估计坐标初始矩阵
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~在正方形区域内产生均匀分布的随机拓扑~~~~~~~~~~~~~~~~~~~~
C=-50+BorderLength.*rand(2,NodeAmount);%生成随机坐标
%带逻辑号的节点坐标
Sxy=[(1:NodeAmount);C];
Beacon=[Sxy(2,1:BeaconAmount);Sxy(3,1:BeaconAmount)];%信标节点坐标
UN=[Sxy(2,(BeaconAmount+1):NodeAmount);Sxy(3,(BeaconAmount+1):NodeAmount)];%未知节点坐标
%画出节点分布图
plot(Sxy(2,1:BeaconAmount),Sxy(3,1:BeaconAmount),'r*',Sxy(2,(BeaconAmount+1):NodeAmount),Sxy(3,(BeaconAmount+1):NodeAmount),'k.')
xlim([5-0,BorderLength/2]);
ylim([-50,BorderLength/2]);
title('* 红色信标节点 . 黑色未知节点')
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~初始化节点间距离、跳数矩阵~~~~~~~~~~~~~~~~~~~~~~
for i=1:NodeAmount
for j=1:NodeAmount
Dall(i,j)=((Sxy(2,i)-Sxy(2,j))^2+(Sxy(3,i)-Sxy(3,j))^2)^0.5;%所有节点间相互距离
if (Dall(i,j)<=R)&&(Dall(i,j)>0)
h(i,j)=1;%初始跳数矩阵
elseif i==j
h(i,j)=0;
else h(i,j)=inf;
end
end
end
%~~~~~~~~~~~~~~~~~~~~~~~~~最短路经算法计算节点间跳数~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
for k=1:NodeAmount
for i=1:NodeAmount
for j=1:NodeAmount
if h(i,k)+h(k,j)<h(i,j)%min(h(i,j),h(i,k)+h(k,j))
h(i,j)=h(i,k)+h(k,j);
end
end
end
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类