✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
图像拼接技术在计算机视觉领域有着广泛的应用,它可以将多幅图像融合成一幅全景图像,从而扩展图像的视野范围。本文介绍了一种基于 Harris 特征匹配和 RANSAC 算法的图像拼接方法,该方法能够有效滤除离群点,提高拼接图像的质量。
1. Harris 特征匹配
Harris 特征检测是一种广泛使用的图像角点检测算法。它通过计算图像中每个像素点的梯度值,并根据梯度值计算一个响应函数,来检测图像中的角点。角点是图像中具有显著变化的区域,通常对应于图像中的边缘或纹理。
Harris 响应函数定义为:
R = det(M) - k(trace(M))^2
其中:
-
R 是 Harris 响应函数
-
M 是图像梯度矩阵的协方差矩阵
-
k 是一个常数,通常取值为 0.04 至 0.06
Harris 特征匹配通过计算图像对之间对应特征点的 Harris 响应函数值,并选择响应函数值最大的点作为匹配点。
2. RANSAC 滤除离群点
RANSAC(随机抽样一致性)是一种用于滤除离群点的算法。它通过随机抽取数据子集,并计算子集上的模型参数,来估计模型参数。如果子集上的模型参数与所有数据上的模型参数一致,则认为子集中的数据点是内点,否则认为是离群点。
在图像拼接中,RANSAC 算法可以用来滤除图像对之间匹配点中的离群点。离群点可能是由于图像畸变、噪声或其他原因造成的。
3. 图像拼接
在滤除离群点之后,就可以对图像进行拼接了。图像拼接通常使用仿射变换或透视变换来对图像进行对齐。
仿射变换是一种二维线性变换,它可以平移、旋转、缩放和倾斜图像。透视变换是一种三维线性变换,它可以对图像进行更复杂的变形。
4. 结论
本文介绍了一种基于 Harris 特征匹配和 RANSAC 算法的图像拼接方法。该方法能够有效滤除离群点,提高拼接图像的质量。实验结果表明,本文提出的方法可以生成高质量的全景图像。使用公开的图像拼接数据集进行实验。实验结果表明,基于 Harris 特征匹配和 RANSAC 滤离群点的图像拼接方法能够有效去除图像拼接中的离群点,提高拼接图像的质量。
下图展示了使用该方法拼接的一组图像:
[图片]
5. 总结
本文介绍了一种基于 Harris 特征匹配和 RANSAC 滤离群点的图像拼接方法。该方法能够有效去除图像拼接中的离群点,提高拼接图像的质量。该方法在全景图像生成、虚拟现实、医学影像等领域具有广泛的应用前景。
📣 部分代码
function S = shannon(img)
I=img;
I=double(I);
[C,R]=size(I); %求图像的规格
Img_size=C*R; %图像像素点的总个数
L=256; %图像的灰度级
H_img=0;
nk=zeros(L,1);
for i=1:C
for j=1:R
Img_level=I(i,j)+1; %获取图像的灰度级
nk(Img_level)=nk(Img_level)+1; %统计每个灰度级像素的点数
end
end
for k=1:L
Ps(k)=nk(k)/Img_size; %计算每一个灰度级像素点所占的概率
if Ps(k)~=0; %去掉概率为0的像素点
H_img=-Ps(k)*log2(Ps(k))+H_img; %求熵值的公式
S=H_img;
end
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类