【图像拼接】基于harris特征匹配+RANSAC滤多幅除离群点图像拼接附Matlab代码

本文介绍了一种利用Harris特征检测和RANSAC算法进行图像拼接的方法,通过角点检测和滤除离群点,提高拼接图像质量,特别适用于全景图像生成和计算机视觉领域。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

图像拼接技术在计算机视觉领域有着广泛的应用,它可以将多幅图像融合成一幅全景图像,从而扩展图像的视野范围。本文介绍了一种基于 Harris 特征匹配和 RANSAC 算法的图像拼接方法,该方法能够有效滤除离群点,提高拼接图像的质量。

1. Harris 特征匹配

Harris 特征检测是一种广泛使用的图像角点检测算法。它通过计算图像中每个像素点的梯度值,并根据梯度值计算一个响应函数,来检测图像中的角点。角点是图像中具有显著变化的区域,通常对应于图像中的边缘或纹理。

Harris 响应函数定义为:

R = det(M) - k(trace(M))^2

其中:

  • R 是 Harris 响应函数

  • M 是图像梯度矩阵的协方差矩阵

  • k 是一个常数,通常取值为 0.04 至 0.06

Harris 特征匹配通过计算图像对之间对应特征点的 Harris 响应函数值,并选择响应函数值最大的点作为匹配点。

2. RANSAC 滤除离群点

RANSAC(随机抽样一致性)是一种用于滤除离群点的算法。它通过随机抽取数据子集,并计算子集上的模型参数,来估计模型参数。如果子集上的模型参数与所有数据上的模型参数一致,则认为子集中的数据点是内点,否则认为是离群点。

在图像拼接中,RANSAC 算法可以用来滤除图像对之间匹配点中的离群点。离群点可能是由于图像畸变、噪声或其他原因造成的。

3. 图像拼接

在滤除离群点之后,就可以对图像进行拼接了。图像拼接通常使用仿射变换或透视变换来对图像进行对齐。

仿射变换是一种二维线性变换,它可以平移、旋转、缩放和倾斜图像。透视变换是一种三维线性变换,它可以对图像进行更复杂的变形。

4. 结论

本文介绍了一种基于 Harris 特征匹配和 RANSAC 算法的图像拼接方法。该方法能够有效滤除离群点,提高拼接图像的质量。实验结果表明,本文提出的方法可以生成高质量的全景图像。使用公开的图像拼接数据集进行实验。实验结果表明,基于 Harris 特征匹配和 RANSAC 滤离群点的图像拼接方法能够有效去除图像拼接中的离群点,提高拼接图像的质量。

下图展示了使用该方法拼接的一组图像:

[图片]

5. 总结

本文介绍了一种基于 Harris 特征匹配和 RANSAC 滤离群点的图像拼接方法。该方法能够有效去除图像拼接中的离群点,提高拼接图像的质量。该方法在全景图像生成、虚拟现实、医学影像等领域具有广泛的应用前景。

📣 部分代码

function S = shannon(img) I=img;I=double(I);[C,R]=size(I);      %求图像的规格Img_size=C*R;       %图像像素点的总个数L=256;              %图像的灰度级H_img=0;nk=zeros(L,1);for i=1:C    for j=1:R        Img_level=I(i,j)+1;                 %获取图像的灰度级                   nk(Img_level)=nk(Img_level)+1;      %统计每个灰度级像素的点数    endendfor k=1:L    Ps(k)=nk(k)/Img_size;                  %计算每一个灰度级像素点所占的概率    if Ps(k)~=0;                           %去掉概率为0的像素点    H_img=-Ps(k)*log2(Ps(k))+H_img;        %求熵值的公式    S=H_img;    endend

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值