✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
局部放电是变压器常见的故障形式,其产生的信号具有非平稳、非线性等特点,易受噪声干扰。小波变换是一种时频分析工具,具有良好的时频局部化特性,可有效提取局部放电信号的特征信息。本文提出了一种基于小波变换的变压器局部放电信号去噪方法,通过小波分解和阈值处理去除噪声,提高信号信噪比,为局部放电故障诊断提供可靠的数据基础。
1. 引言
变压器局部放电是指绝缘介质内部局部区域发生的电气放电现象。局部放电会产生电磁波信号,这些信号包含了变压器绝缘状态的信息。然而,实际采集的局部放电信号往往受到各种噪声的干扰,如电磁干扰、背景噪声等,影响了信号的分析和故障诊断。
2. 小波变换原理
小波变换是一种时频分析方法,它通过将信号分解为一系列小波函数的线性组合来实现。小波函数是一个具有有限长度的振荡函数,其形状和频率可根据需要进行调整。
小波变换分为正变换和逆变换。正变换将时域信号分解为小波系数,反映了信号在不同尺度和时间位置上的能量分布。逆变换则将小波系数重建为时域信号。
3. 基于小波变换的信号去噪方法
基于小波变换的信号去噪方法主要包括小波分解、阈值处理和信号重建三个步骤。
3.1 小波分解
小波分解将信号分解为一系列小波系数。选择合适的母小波和分解层数,可以有效地提取信号的特征信息和去除噪声。
3.2 阈值处理
阈值处理是对小波系数进行滤波操作,去除噪声系数。常用的阈值处理方法包括软阈值处理和硬阈值处理。
3.3 信号重建
阈值处理后的信号系数通过逆小波变换重建为时域信号。
4. 实验结果
本文采用基于小波变换的信号去噪方法对变压器局部放电信号进行去噪处理。实验结果表明,该方法能够有效去除噪声,提高信号信噪比。
图1为去噪前后的局部放电信号波形。可以看出,去噪后信号中的噪声明显减少,特征信息更加突出。
图1. 局部放电信号去噪前后对比
5. 结论
本文提出了一种基于小波变换的变压器局部放电信号去噪方法。该方法通过小波分解和阈值处理有效地去除噪声,提高信号信噪比。实验结果表明,该方法能够为局部放电故障诊断提供可靠的数据基础。
📣 部分代码
N=2000;
A=1;
SR=60e6;
ti=1*10^(-6);
tii=1*10^(-7);
fd=1000000;
a=1/60000000;
t=1.6667e-008: 1.6667e-008: 1.6667e-005*2;
wd=2*pi*fd;
q=atan(wd/tii);
s1=A*(exp((-t)/ti)-exp((-t)/tii));
s2=A*(exp((-t)/ti).*cos((wd*t)-q)-exp((-t)/tii).*cos(q));
x=s1;
x=x/max(abs(x));
subplot(4,1,1);plot(x);title('局部放电信号')%产生局部放电信号
k=1000;
m=1000000;
⛳️ 运行结果
🔗 参考文献
[1]张艳阳.基于小波分析的变压器局部放电信号去噪方法[J].计算机仿真, 2007, 24(12):4.DOI:10.3969/j.issn.1006-9348.2007.12.056.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类