✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容
波浪运动是一种介质中的扰动,它以波的形式传播。波浪可以发生在各种介质中,包括水、空气、固体和电磁场。
波浪的种类
波浪可以分为两大类:
-
**横波:**介质中的粒子垂直于波传播方向振动。例如,水波和声波。
-
**纵波:**介质中的粒子平行于波传播方向振动。例如,地震波和声波。
波浪的特性
波浪具有以下特性:
-
**波长(λ):**两个相邻波峰或波谷之间的距离。
-
**波速(v):**波浪传播的速度。
-
**频率(f):**波浪在单位时间内通过某一点的次数。
-
**波幅(A):**波浪从平衡位置到波峰或波谷的距离。
波浪的传播
波浪在介质中传播时,会发生以下现象:
-
**反射:**当波浪遇到障碍物时,它会反射回来。
-
**折射:**当波浪从一种介质传播到另一种介质时,它会改变传播方向。
-
**衍射:**当波浪遇到障碍物或狭缝时,它会绕过障碍物或狭缝传播。
-
**干涉:**当两个或多个波浪在同一介质中传播时,它们会相互叠加,产生干涉现象。
波浪的应用
波浪在科学、工程和日常生活中有广泛的应用,包括:
-
**水波:**用于航海、冲浪和发电。
-
**声波:**用于通信、医疗成像和声纳。
-
**地震波:**用于研究地球内部结构和预测地震。
-
**电磁波:**用于无线通信、雷达和光学。
结论
波浪运动是介质中扰动的传播,它具有独特的特性和广泛的应用。理解波浪运动对于许多科学和工程领域至关重要。
📣 部分代码
clc
clear all;close all
%====Specify run directory ===================================
caso=menu('Selecciona un caso','Caso 9','Caso 10','Caso 11');
if caso==1
load Caso9.mat;ho=0.6;%H=0.15 m; T=4 s; h=0.6 m
elseif caso==2
load Caso10.mat;ho=0.6;%H=0.15 m; T=5 s; h=0.6 m
elseif caso==3
load Caso11.mat;ho=0.6;%H=0.15 m; T=6 s; h=0.6 m
end
beachX=[20 30 30 20];beachZ=[0 1 0 0];
sand=[[209 172 46]/256];
m=length(xc);n=length(yc);
dt=0.1;
N=length(time);
%
for iii=1:length(xc)
if(xc(iii)<20)
h(iii)=0.6;
else
h(iii)=0.6-0.1.*(xc(iii)-20);
end
end
xS=input('Introduce la posici髇 de los sensores x (m):');%Ejemplo [10 22 25]
for ii=1:length(xS)
idx(ii)=max(find(xc<xS(ii)));
end
%===============================
%Animation loop
%===============================
water=[0 0 1];
j=0;
figure(1)
for i=0:N-1
j=j+1;
subplot(2,1,1)
fill([xc(1) xc' xc(end)],[0 eta(j,:) 0],water), hold on
for jj=1:length(xS)
plot([xS(jj) xS(jj)],[ho-0.1 ho+0.20],'k','LineWidth',3)
% text(xS(jj),0.9,'WG1')
% eval(['text(xS(jj),0.9,' ''WG'' num2str(jj))])
wg=text(xS(jj),0.9,['WG' num2str(jj)],'fontsize',12,'color','black','FontWeight','bold');
end
xlabel('Along-flume distance (m)')
ylabel('Elevation (m)')
% hold on
f1=fill(beachX,beachZ,sand);
td=title(['t = ' num2str(i*dt) ' s'],'fontsize',12,'color','black','FontWeight','bold');
set(gca,'FontSize',14)
axis([0 xc(end) 0 yc(end)])
set(gca,'LineWidth',2)
set(gcf,'position',[146 311 1166 681])
% set(gcf,'position',[217 428 2119 610])
hold off
drawnow
ETA(:,1:length(idx))=eta(:,idx)-eta(1,idx);
subplot(2,1,2)
plot(time(1:j),ETA(1:j,:)),hold on
% axis([time(i+1)-20 time(i+1) -0.15 0.15]),hold off
if(i<500)
axis([0 50 -0.1 0.20]),hold off
else
axis([time(j)-50 time(j) -0.1 0.20]),hold off
end
xlabel('Time (s)'),ylabel('eta (m)')
set(gca,'FontSize',14)
set(gca,'LineWidth',2)
end
etaWG=ETA;
t=time;
%save Practica6.mat t etaWG
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类