✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
八木天线是一种广泛应用于通信领域的定向天线,具有高增益、高指向性等优点。基于矩量法的天线仿真是一种数值方法,可以准确地计算天线的电磁特性。本文将介绍基于矩量法对八木天线进行仿真的方法和步骤。
矩量法
矩量法是一种求解积分方程的数值方法。对于天线问题,积分方程可以表示为:
∫[J(r') * G(r, r')] * dV' = E_i(r)
其中:
-
J(r') 为天线上的电流密度
-
G(r, r') 为格林函数
-
E_i(r) 为激励场
矩量法将天线表面离散为一系列小块,并用脉冲函数近似电流密度。这样,积分方程可以转化为一个线性方程组:
[Z] * [I] = [V]
其中:
-
[Z] 为阻抗矩阵
-
[I] 为电流向量
-
[V] 为激励电压向量
求解该方程组即可得到天线上的电流分布。
八木天线仿真
八木天线由一个激励振子、一个反射器和多个导向器组成。基于矩量法的天线仿真步骤如下:
-
**建立天线模型:**使用计算机辅助设计(CAD)软件建立八木天线的几何模型。
-
**离散化:**将天线表面离散为一系列小块,并用脉冲函数近似电流密度。
-
**计算阻抗矩阵:**计算天线块之间的格林函数,并组装阻抗矩阵。
-
**激励:**设置激励振子的激励电压。
-
**求解方程组:**求解阻抗矩阵与激励电压向量的线性方程组,得到天线上的电流分布。
-
**计算电磁特性:**根据电流分布,计算天线的增益、指向性、输入阻抗等电磁特性。
应用
基于矩量法的天线仿真广泛应用于通信领域,包括:
-
天线设计和优化
-
电磁兼容性分析
-
无线电波传播研究
-
雷达系统设计
总结
基于矩量法的天线仿真是一种准确且高效的方法,可以用于计算八木天线等天线的电磁特性。该方法在通信领域有着广泛的应用,为天线设计和优化提供了有力的工具。
📣 部分代码
clc
clear all
%%
%
%信标节点位于等边三角形顶点的仿真
%A,B,C为三个选定的信标节点,节点坐标已知(为便于防真及验证,代码中采用的等边三角形)
for t = 1:5
A = [0,0];
B = [5*t,5*t*sqrt(3)];
C = [10*t,0];
nums = [A(1),A(2),B(1),B(2),C(1),C(2)];
p = min(nums);
q = max(nums);
L = sqrt((A(1)-C(1))^2+(A(2)-C(2))^2);
m = 20;
%生成在[p,q]上满足均匀分布的随机数矩阵
%即生成一组m行2列的有可能落在等边三角形区域内的坐标
numbox = p+(q-p)*rand(m,2);
end
e_average = e_sum/N;
e_average_percent = e_average/L;
e_average_box(t) = e_average
e_average_percent_box(t) = e_average_percent
z=e_average_percent_box(t);
%%
%
%画图部分
%每次参考距离
figure(1)
plot(t,l(i),'G*')
title('The picture of initial coordinates ');
xlabel('time');
ylabel('distance');
grid on
hold on;
%定位质心坐标
figure(2)
plot(P_temp(1),P_temp(2),'*')
title('The picture of coordinates ');
xlabel('Xdistance');
ylabel('Ydistance');
grid on
hold on;
%均方误差
figure(3)
plot(L,z,'G*')
title('The picture of e_average_percent ');
xlabel('distance');
ylabel('e_average_percent');
grid on
hold on;
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类