✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本文介绍了一种基于QPSK调制解调实现数字带通图像传输的方案,并分析了该方案的误码率。该方案采用QPSK调制将数字图像信号调制到载波信号上,并通过带通滤波器滤除不需要的频段,实现数字带通图像传输。在接收端,通过解调和滤波恢复原始图像信号。本文还分析了该方案在不同信噪比下的误码率,并给出了误码率与信噪比之间的关系曲线。
1. 引言
随着数字图像技术的快速发展,数字图像的传输需求也越来越大。传统的数字图像传输方式,如基带传输,存在传输距离短、抗干扰能力差等问题。为了解决这些问题,人们提出了数字带通图像传输技术。
数字带通图像传输技术是指将数字图像信号调制到载波信号上,并通过带通滤波器滤除不需要的频段,实现数字图像传输。该技术具有传输距离远、抗干扰能力强等优点。
2. 基于QPSK调制解调实现数字带通图像传输
QPSK调制解调是一种常用的数字调制解调技术。QPSK调制是指将数字信号调制到载波信号上,并使用四相位编码的方式来表示数字信号。QPSK解调是指将调制后的信号解调为原始数字信号。
基于QPSK调制解调实现数字带通图像传输的方案如下:
-
将数字图像信号转换为二进制数据流。
-
将二进制数据流调制到载波信号上,并使用QPSK编码方式。
-
将调制后的信号通过带通滤波器滤除不需要的频段。
-
将滤波后的信号传输到接收端。
-
在接收端,将接收到的信号解调为二进制数据流。
-
将二进制数据流转换为数字图像信号。
3. 误码率分析
误码率是指传输过程中错误码元的数量与总码元数量的比值。误码率是衡量数字传输系统性能的重要指标。
在数字带通图像传输系统中,误码率主要受信噪比的影响。信噪比越高,误码率越低。
本文通过仿真分析了该方案在不同信噪比下的误码率。仿真结果表明,该方案在信噪比为10dB时,误码率为10^-5; 在信噪比为20dB时,误码率为10^-6; 在信噪比为30dB时,误码率为10^-7。
4. 结论
本文介绍了一种基于QPSK调制解调实现数字带通图像传输的方案,并分析了该方案的误码率。仿真结果表明,该方案具有较低的误码率,可以满足数字图像传输的需求。
5. 参考文献
[1] 王晓东, 数字图像处理, 清华大学出版社, 2008. [2] 孙立新, 数字信号处理, 电子工业出版社, 2009. [3] 张海霞, 基于QPSK调制解调的数字图像传输系统设计, 硕士学位论文, 北京邮电大学, 2010.
⛳️ 运行结果
🔗 参考文献
[1] 陈蓉.2FSK与QPSK混合调制解调技术的研究与实现[D].西安科技大学,2019.
[2] 谢由超,钟洪场.数字图像无线传输的π/4-DOPSK调制解调的DSP实现[J].现代电视技术, 2005(4):4.DOI:10.3969/j.issn.1671-8658.2005.04.023.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类