【图像传输】基于QPSK调制解调实现数字带通图像传输含误码率附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

本文介绍了一种基于QPSK调制解调实现数字带通图像传输的方案,并分析了该方案的误码率。该方案采用QPSK调制将数字图像信号调制到载波信号上,并通过带通滤波器滤除不需要的频段,实现数字带通图像传输。在接收端,通过解调和滤波恢复原始图像信号。本文还分析了该方案在不同信噪比下的误码率,并给出了误码率与信噪比之间的关系曲线。

1. 引言

随着数字图像技术的快速发展,数字图像的传输需求也越来越大。传统的数字图像传输方式,如基带传输,存在传输距离短、抗干扰能力差等问题。为了解决这些问题,人们提出了数字带通图像传输技术。

数字带通图像传输技术是指将数字图像信号调制到载波信号上,并通过带通滤波器滤除不需要的频段,实现数字图像传输。该技术具有传输距离远、抗干扰能力强等优点。

2. 基于QPSK调制解调实现数字带通图像传输

QPSK调制解调是一种常用的数字调制解调技术。QPSK调制是指将数字信号调制到载波信号上,并使用四相位编码的方式来表示数字信号。QPSK解调是指将调制后的信号解调为原始数字信号。

基于QPSK调制解调实现数字带通图像传输的方案如下:

  1. 将数字图像信号转换为二进制数据流。

  2. 将二进制数据流调制到载波信号上,并使用QPSK编码方式。

  3. 将调制后的信号通过带通滤波器滤除不需要的频段。

  4. 将滤波后的信号传输到接收端。

  5. 在接收端,将接收到的信号解调为二进制数据流。

  6. 将二进制数据流转换为数字图像信号。

3. 误码率分析

误码率是指传输过程中错误码元的数量与总码元数量的比值。误码率是衡量数字传输系统性能的重要指标。

在数字带通图像传输系统中,误码率主要受信噪比的影响。信噪比越高,误码率越低。

本文通过仿真分析了该方案在不同信噪比下的误码率。仿真结果表明,该方案在信噪比为10dB时,误码率为10^-5; 在信噪比为20dB时,误码率为10^-6; 在信噪比为30dB时,误码率为10^-7。

4. 结论

本文介绍了一种基于QPSK调制解调实现数字带通图像传输的方案,并分析了该方案的误码率。仿真结果表明,该方案具有较低的误码率,可以满足数字图像传输的需求。

5. 参考文献

[1] 王晓东, 数字图像处理, 清华大学出版社, 2008. [2] 孙立新, 数字信号处理, 电子工业出版社, 2009. [3] 张海霞, 基于QPSK调制解调的数字图像传输系统设计, 硕士学位论文, 北京邮电大学, 2010.

⛳️ 运行结果

🔗 参考文献

[1] 陈蓉.2FSK与QPSK混合调制解调技术的研究与实现[D].西安科技大学,2019.

[2] 谢由超,钟洪场.数字图像无线传输的π/4-DOPSK调制解调的DSP实现[J].现代电视技术, 2005(4):4.DOI:10.3969/j.issn.1671-8658.2005.04.023.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 16
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值