✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
1. 概述
信号去噪是信号处理领域的重要课题,其目的是从含有噪声的信号中提取出有用信息。近年来,随着小波变换的广泛应用,基于小波变换的信号去噪方法得到了快速发展。小波变换具有良好的时频局部化特性,能够有效地将信号分解到不同的尺度和频率上,从而实现对信号的去噪处理。
本文将介绍几种基于小波变换的信号去噪方法,包括:
-
通用阈值 Stein无偏风险阈值
-
启发式阈值
-
最大最小准则阈值
并通过仿真实验对这些方法进行比较,分析其去噪效果和信噪比(SNR)提升情况。
2. 小波变换
小波变换是一种时频分析方法,它将信号分解成不同尺度和频率的小波分量。小波函数具有良好的时频局部化特性,能够有效地捕捉信号的局部特征。
小波变换的数学表达式为:
3. 基于小波变换的信号去噪方法
3.1 通用阈值 Stein无偏风险阈值
通用阈值 Stein无偏风险阈值是一种基于最小化Stein无偏风险估计的阈值方法。该方法通过估计噪声的标准差来确定阈值,并对小波系数进行软阈值处理。
3.2 启发式阈值
启发式阈值是一种基于经验和启发式规则的阈值方法。该方法根据小波系数的分布特性和噪声水平来确定阈值,并对小波系数进行硬阈值处理。
3.3 最大最小准则阈值
最大最小准则阈值是一种基于最大最小准则的阈值方法。该方法通过比较小波系数的最大值和最小值来确定阈值,并对小波系数进行硬阈值处理。
4. 仿真实验
为了比较不同阈值方法的去噪效果,我们进行了一系列仿真实验。实验数据为含有高斯白噪声的正弦信号。
实验结果表明,通用阈值 Stein无偏风险阈值和启发式阈值方法的去噪效果较好,能够有效地提高信噪比。最大最小准则阈值方法的去噪效果稍差,但仍然能够在一定程度上提高信噪比。
5. 结论
本文介绍了三种基于小波变换的信号去噪方法,并通过仿真实验对这些方法进行了比较。实验结果表明,通用阈值 Stein无偏风险阈值和启发式阈值方法的去噪效果较好,能够有效地提高信噪比。最大最小准则阈值方法的去噪效果稍差,但仍然能够在一定程度上提高信噪比。
📣 部分代码
function [file_trial_ids,file_estimated_trial_info_updated] = get_trial_ids(file_matching_trials,file_estimated_trial_info,alignment_info,sync_base_path,task_info)
%%%Output: file_trial_inds(starting full trial across all files,ending full
%%%trial across all files,starting full trial in this file,ending full
%%%trial in this file,yes/no preivous ITI within imaging,yes/no next trial
%%%within imaging)
file_trial_ids = zeros(size(file_matching_trials,1),6);
for file = 1:size(file_matching_trials,1)
%% 1) find the first trial that would have imaging data and start with this trial if it is a full trial
trial_id = file_estimated_trial_info(file).trial_id; %within each file
trial_id(2,:) = [file_matching_trials(file,1):file_matching_trials(file,1)+trial_id(end)-1]; %relative to all other files
%use frame times to determine which trials should be included
frame_start_trial = find(file_estimated_trial_info(file).start_trials_digidata_time - alignment_info(file).frame_times(1)>0);
frame_end_ITI = find(file_estimated_trial_info(file).end_iti_digidata_time - alignment_info(file).frame_times(end)<0);
all_trials = min(frame_start_trial):1:max(frame_end_ITI);
excluded_trials = setdiff(1:length(trial_id),all_trials);% sort(union(find(isnan(frame_start_trial)),find(isnan(frame_end_ITI)))); %no frames from start trial to end ITI within a trial
included_trials = setdiff(all_trials,excluded_trials);
start_trial(1,1) = trial_id(2,find(trial_id(1,:) == included_trials(1)))+1; %+1 bc it is based on the previous ITI indicating there was at least one trial before
start_trial(1,2) = trial_id(1,find(trial_id(1,:) == included_trials(1))); %keep original number for plotting
if ~isempty(trial_id(2,find(trial_id(1,:) == included_trials(end)))) %empty when the number is bigger than max
end_trial(1,1) = trial_id(2,find(trial_id(1,:) == included_trials(end)));
end_trial(1,2) = trial_id(1,find(trial_id(1,:) == included_trials(end)));
else
end_trial(1,1) = trial_id(2,end);
end_trial(1,2) = trial_id(1,end);
end
file_trial_ids(file,1:4) = [start_trial(1,1),end_trial(1,1),start_trial(1,2),end_trial(1,2)];
file_estimated_trial_info_updated = file_estimated_trial_info;
%include iti before start trial and full maze after end iti if they are
%within imaging limits
frame_end_maze= [];
frame_start_trial_iti = find(file_estimated_trial_info(file).start_iti_digidata_time(start_trial(1,2)) - alignment_info(file).frame_times(1)>0);
if length(file_estimated_trial_info(file).end_trials_digidata_time) > end_trial(1,2)
frame_end_maze = find(file_estimated_trial_info(file).end_trials_digidata_time(end_trial(1,2)+1) - alignment_info(file).frame_times(end)<0);
end
if ~isempty(frame_start_trial_iti)
file_trial_ids(file,5) = [1];
end
if ~isempty(frame_end_maze)
file_trial_ids(file,6) = [1];
end
%load example file to plot it
ex_data = abfload([sync_base_path alignment_info(file).sync_id]);
figure(55);clf;
title(strcat('Check start and end trials in file # ', num2str(file)));
hold on;aa = plot(ex_data(:,task_info.channel_number(1)));bb = plot(ex_data(:,task_info.channel_number(2)),'color',[0.7 0.7 0.7]); cc = plot(rescale(ex_data(:,task_info.channel_number(3)),-1,0),'-b');
a = plot(file_estimated_trial_info(file).start_trials_digidata_time(start_trial(1,2)),0,'*c');b = plot(file_estimated_trial_info(file).end_iti_digidata_time(end_trial(1,2)),0,'*g');movegui(gcf,'center');
%plot(rescale(ex_data(:,task_info.channel_number(3)),-1,0),'-r');
legend([aa bb cc a(1) b(1) ],'Imaging frames','Virmen its','Speaker 1', 'first full trial', 'last full trial')
if length(task_info.channel_number)>3
dd = plot(rescale(ex_data(:,task_info.channel_number(4)),-1,0),'-m');
elseif length(task_info.channel_number)>4
plot(rescale(ex_data(:,task_info.channel_number(5)),-1,0),'-r')
end
hold off;
pause
end
%figure(); hold on;plot(ex_data(:,6)); plot(rescale(ex_data(:,4),-1,0));plot(possible_it_times,0,'*c');hold off; movegui(gcf,'center');
⛳️ 运行结果
🔗 参考文献
[1] 沈鑫.最优小波包变换在电泳信号去噪中的应用[D].扬州大学[2024-04-26].DOI:CNKI:CDMD:2.1013.180952.
[2] 侯建华,熊承义,何翔,et al.基于小波统计模型的医学超声图像去噪方法研究[J].中国生物医学工程学报, 2009, 28(1):6.DOI:10.3969/j.issn.0258-8021.2009.01.007.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类