✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
夜间车辆尾灯识别是智能驾驶系统的重要组成部分,它可以帮助车辆在夜间识别前方车辆,避免碰撞事故的发生。本文介绍了一种基于计算机视觉亮度和颜色阈值实现夜间车辆尾灯识别的算法。该算法首先对图像进行预处理,然后根据亮度和颜色阈值提取候选尾灯区域,最后通过形态学操作和轮廓分析识别尾灯。实验结果表明,该算法能够有效识别夜间车辆尾灯,识别率高,鲁棒性强。
1. 引言
近年来,随着智能驾驶技术的快速发展,夜间车辆尾灯识别技术越来越受到关注。夜间车辆尾灯识别是智能驾驶系统的重要组成部分,它可以帮助车辆在夜间识别前方车辆,避免碰撞事故的发生。
目前,夜间车辆尾灯识别技术主要有以下几种:
-
基于模板匹配的识别方法:该方法将预先定义的尾灯模板与图像进行匹配,识别出与模板匹配的区域作为尾灯。
-
基于颜色特征的识别方法:该方法根据尾灯的颜色特征提取候选尾灯区域,然后通过形态学操作和轮廓分析识别尾灯。
-
基于机器学习的识别方法:该方法利用机器学习算法训练模型,识别出图像中的尾灯。
本文介绍了一种基于计算机视觉亮度和颜色阈值实现夜间车辆尾灯识别的算法。该算法首先对图像进行预处理,然后根据亮度和颜色阈值提取候选尾灯区域,最后通过形态学操作和轮廓分析识别尾灯。实验结果表明,该算法能够有效识别夜间车辆尾灯,识别率高,鲁棒性强。
2. 算法介绍
该算法主要包括以下几个步骤:
-
图像预处理:对图像进行灰度化、平滑处理和锐化处理等预处理操作,提高图像质量,方便后续处理。
-
候选尾灯区域提取:根据亮度和颜色阈值提取候选尾灯区域。亮度阈值用于提取图像中亮度较高的区域,颜色阈值用于提取图像中红色和黄色的区域。
-
形态学操作:对提取的候选尾灯区域进行形态学操作,去除噪声和干扰。
-
轮廓分析:对形态学操作后的图像进行轮廓分析,识别出尾灯的轮廓。
-
尾灯识别:根据尾灯的轮廓和位置信息识别尾灯。
3. 结论
本文介绍了一种基于计算机视觉亮度和颜色阈值实现夜间车辆尾灯识别的算法。该算法能够有效识别夜间车辆尾灯,识别率高,鲁棒性强。该算法可以应用于智能驾驶系统,帮助车辆在夜间识别前方车辆,避免碰撞事故的发生。
📣 部分代码
function [ cellsPosition ] = subfunc_buildNetwork(L,rc)
if nargin < 1
L = 48;
end
if nargin < 2
rc = 800;
end
% Build netwrok ----------------------------------------------------------
numOfLevels = 8;
numOfCellsInEachLevel = [4 5 6 7 8 7 6 5];
cellsIndex = [ 1 2 5 6, ....
4 3 8 7 24,...
9 10 13 14 17 18,...
12 11 16 15 20 19 40,...
21 22 25 26 29 30 33 34,...
23 28 27 32 31 36 35,...
37 38 41 42 45 46,...
39 44 43 48 47];
% build y position of each level
cellsPosition = zeros(L,2);
Ind = 0;
xStart = sqrt(3/2)*rc;
yStart = 0;
for l = 1 : numOfLevels
range = Ind + (1:numOfCellsInEachLevel(l));
Ind = Ind + numOfCellsInEachLevel(l);
% build x positions
if l <= 5
xStart = xStart - sqrt(3)*rc/2;
else
xStart = xStart + sqrt(3)*rc/2;
end
cellsPosition(cellsIndex(range),1) = xStart + (0:(numOfCellsInEachLevel(l)-1))*sqrt(3)*rc;
% build y positions
cellsPosition(cellsIndex(range),2) = yStart;
yStart = yStart - (3/2)*rc;
end
if L == 48
% do nothing
elseif L <= 7
cellsPosition = cellsPosition([3 4 1 2 8 13 10],:);
cellsPosition = cellsPosition(1:L,:);
else
error('L = %d is not supported.',L)
end
%--------------------------------------------------------------------------
end
⛳️ 运行结果
🔗 参考文献
[1]刘尊洋,叶庆,李菲,等.基于亮度与颜色四阈值的尾灯检测算法[J].计算机工程, 2010, 36(21):3.DOI:10.3969/j.issn.1000-3428.2010.21.072.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类