【图像隐写】基于离散余弦变换结合奇异值分解DCT-SVD实现水印嵌入提取SNR SSIM附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

图像隐写术旨在将秘密信息嵌入到图像中,使其难以被察觉,从而实现安全的信息传输。本文介绍了一种基于离散余弦变换(DCT)结合奇异值分解(SVD)的图像隐写技术,并分析其在信噪比(SNR)和结构相似性(SSIM)方面的性能。

1. 引言

随着数字图像的广泛应用,图像安全问题也越来越受到关注。图像隐写术作为一种重要的信息安全技术,可以将秘密信息嵌入到图像中,使其难以被察觉,从而实现安全的信息传输。

近年来,基于DCT和SVD的图像隐写技术得到了广泛的研究。DCT是一种有效的图像压缩技术,可以将图像分解为不同的频率分量,而SVD则可以将矩阵分解为奇异值和奇异向量。将DCT和SVD结合起来,可以有效地将秘密信息嵌入到图像的低频分量中,从而提高隐写技术的鲁棒性和安全性。

2. 相关工作

近年来,许多学者对基于DCT和SVD的图像隐写技术进行了研究。例如,文献[1]提出了一种基于DCT和SVD的图像隐写技术,该技术将秘密信息嵌入到图像的低频分量中,并利用SVD对嵌入后的图像进行加密。文献[2]提出了一种基于DCT和SVD的图像隐写技术,该技术利用SVD对图像进行分解,并将秘密信息嵌入到奇异值中。

这些研究表明,基于DCT和SVD的图像隐写技术具有较高的鲁棒性和安全性。

3. DCT-SVD图像隐写技术

本节介绍一种基于DCT和SVD的图像隐写技术,该技术将秘密信息嵌入到图像的低频分量中,并利用SVD对嵌入后的图像进行加密。

3.1 水印嵌入

水印嵌入过程如下:

  1. 将原始图像进行DCT变换,得到DCT系数矩阵。

  2. 将秘密信息转换为二进制序列。

  3. 将二进制序列嵌入到DCT系数矩阵的低频分量中。

  4. 对嵌入后的DCT系数矩阵进行SVD分解,得到奇异值矩阵、左奇异向量矩阵和右奇异向量矩阵。

  5. 对奇异值矩阵进行加密,并将其与左奇异向量矩阵和右奇异向量矩阵一起存储。

3.2 水印提取

水印提取过程如下:

  1. 读取加密后的奇异值矩阵、左奇异向量矩阵和右奇异向量矩阵。

  2. 对奇异值矩阵进行解密,并将其与左奇异向量矩阵和右奇异向量矩阵一起进行SVD合成。

  3. 得到嵌入后的DCT系数矩阵。

  4. 将DCT系数矩阵进行逆DCT变换,得到嵌入水印后的图像。

  5. 从嵌入水印后的图像中提取秘密信息。

​结论

基于DCT-SVD的图像隐写技术是一种有效的信息安全技术,可以将秘密信息嵌入到图像中,并保持较高的SNR和SSIM值。该技术具有较高的鲁棒性和安全性,可以应用于各种信息安全场景。

📣 部分代码

function [h,hcu] = subfunc_plotHetNetworkSetup(L,rc,cellsPosition,usersPositions,usersCandidate)figure(1)        clf    % set a color        Colors = [1 1 1];        hCnt   = 1;    % plot cells' central positions        h(hCnt) = plot(cellsPosition(:,1)/1e3*NaN,cellsPosition(:,2)/1e3*NaN,'xr','MarkerSize',4);        hCnt = hCnt + 1;        hold on    for cnt = 1 : L        % plot cell boundaries        boundaries = rc(cnt)*[sin([0,.01:.01:2*pi,2*pi]).',...                              cos([0,.01:.01:2*pi,2*pi]).'];        % Note that 1e3 is used to covert from m to Km        h(hCnt) =  fill(cellsPosition(cnt,1)/1e3 + boundaries(:,1)/1e3,...                        cellsPosition(cnt,2)/1e3 + boundaries(:,2)/1e3,...                        Colors,'FaceAlpha',0.8);        hCnt = hCnt + 1;    end                         for cnt = 1 : L        boundaries = rc(cnt)*[sin([0,.01:.01:2*pi,2*pi]).',...                              cos([0,.01:.01:2*pi,2*pi]).'];        % Note that 1e3 is used to covert from m to Km        h(hCnt) = plot(cellsPosition(cnt,1)/1e3 + boundaries(:,1)/1e3,...                       cellsPosition(cnt,2)/1e3 + boundaries(:,2)/1e3,'k:');        hCnt = hCnt + 1;               end    for cnt = 1 : L         text(cellsPosition(cnt,1)/1e3-rc(cnt)*sqrt(3)/20/1e3,...             cellsPosition(cnt,2)/1e3-0*rc(cnt)*sqrt(3)/20/1e3,...             num2str(cnt),'FontSize',8,'FontWeight','Bold','Color','k')                end    % Plot users positions    h(hCnt) = plot(usersPositions(usersCandidate,1)/1e3,...                   usersPositions(usersCandidate,2)/1e3,'ro','MarkerFaceColor','r');    hcu  = hCnt;    hend

⛳️ 运行结果

🔗 参考文献

[1] 曾志华,钱雪忠.基于DCT和SVD联合的数字水印算法[J].计算机工程与设计, 2007.DOI:10.3969/j.issn.1000-7024.2007.01.036.

[2] 曾志华,钱雪忠.基于DCT和SVD联合的数字水印算法[J].计算机工程与设计, 2007, 028(001):109-111.

[3] 刘俊景,蒋华.一种基于离散余弦变换与奇异值分解的数字图像水印算法[C]//2007年全国开放式分布与并行计算机学术会议论文集(下册).2007.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值