✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
图像隐写术旨在将秘密信息嵌入到图像中,使其难以被察觉,从而实现安全的信息传输。本文介绍了一种基于离散余弦变换(DCT)结合奇异值分解(SVD)的图像隐写技术,并分析其在信噪比(SNR)和结构相似性(SSIM)方面的性能。
1. 引言
随着数字图像的广泛应用,图像安全问题也越来越受到关注。图像隐写术作为一种重要的信息安全技术,可以将秘密信息嵌入到图像中,使其难以被察觉,从而实现安全的信息传输。
近年来,基于DCT和SVD的图像隐写技术得到了广泛的研究。DCT是一种有效的图像压缩技术,可以将图像分解为不同的频率分量,而SVD则可以将矩阵分解为奇异值和奇异向量。将DCT和SVD结合起来,可以有效地将秘密信息嵌入到图像的低频分量中,从而提高隐写技术的鲁棒性和安全性。
2. 相关工作
近年来,许多学者对基于DCT和SVD的图像隐写技术进行了研究。例如,文献[1]提出了一种基于DCT和SVD的图像隐写技术,该技术将秘密信息嵌入到图像的低频分量中,并利用SVD对嵌入后的图像进行加密。文献[2]提出了一种基于DCT和SVD的图像隐写技术,该技术利用SVD对图像进行分解,并将秘密信息嵌入到奇异值中。
这些研究表明,基于DCT和SVD的图像隐写技术具有较高的鲁棒性和安全性。
3. DCT-SVD图像隐写技术
本节介绍一种基于DCT和SVD的图像隐写技术,该技术将秘密信息嵌入到图像的低频分量中,并利用SVD对嵌入后的图像进行加密。
3.1 水印嵌入
水印嵌入过程如下:
-
将原始图像进行DCT变换,得到DCT系数矩阵。
-
将秘密信息转换为二进制序列。
-
将二进制序列嵌入到DCT系数矩阵的低频分量中。
-
对嵌入后的DCT系数矩阵进行SVD分解,得到奇异值矩阵、左奇异向量矩阵和右奇异向量矩阵。
-
对奇异值矩阵进行加密,并将其与左奇异向量矩阵和右奇异向量矩阵一起存储。
3.2 水印提取
水印提取过程如下:
-
读取加密后的奇异值矩阵、左奇异向量矩阵和右奇异向量矩阵。
-
对奇异值矩阵进行解密,并将其与左奇异向量矩阵和右奇异向量矩阵一起进行SVD合成。
-
得到嵌入后的DCT系数矩阵。
-
将DCT系数矩阵进行逆DCT变换,得到嵌入水印后的图像。
-
从嵌入水印后的图像中提取秘密信息。
结论
基于DCT-SVD的图像隐写技术是一种有效的信息安全技术,可以将秘密信息嵌入到图像中,并保持较高的SNR和SSIM值。该技术具有较高的鲁棒性和安全性,可以应用于各种信息安全场景。
📣 部分代码
function [h,hcu] = subfunc_plotHetNetworkSetup(L,rc,cellsPosition,usersPositions,usersCandidate)
figure(1)
clf
% set a color
Colors = [1 1 1];
hCnt = 1;
% plot cells' central positions
h(hCnt) = plot(cellsPosition(:,1)/1e3*NaN,cellsPosition(:,2)/1e3*NaN,'xr','MarkerSize',4);
hCnt = hCnt + 1;
hold on
for cnt = 1 : L
% plot cell boundaries
boundaries = rc(cnt)*[sin([0,.01:.01:2*pi,2*pi]).',...
cos([0,.01:.01:2*pi,2*pi]).'];
% Note that 1e3 is used to covert from m to Km
h(hCnt) = fill(cellsPosition(cnt,1)/1e3 + boundaries(:,1)/1e3,...
cellsPosition(cnt,2)/1e3 + boundaries(:,2)/1e3,...
Colors,'FaceAlpha',0.8);
hCnt = hCnt + 1;
end
for cnt = 1 : L
boundaries = rc(cnt)*[sin([0,.01:.01:2*pi,2*pi]).',...
cos([0,.01:.01:2*pi,2*pi]).'];
% Note that 1e3 is used to covert from m to Km
h(hCnt) = plot(cellsPosition(cnt,1)/1e3 + boundaries(:,1)/1e3,...
cellsPosition(cnt,2)/1e3 + boundaries(:,2)/1e3,'k:');
hCnt = hCnt + 1;
end
for cnt = 1 : L
text(cellsPosition(cnt,1)/1e3-rc(cnt)*sqrt(3)/20/1e3,...
cellsPosition(cnt,2)/1e3-0*rc(cnt)*sqrt(3)/20/1e3,...
num2str(cnt),'FontSize',8,'FontWeight','Bold','Color','k')
end
% Plot users positions
h(hCnt) = plot(usersPositions(usersCandidate,1)/1e3,...
usersPositions(usersCandidate,2)/1e3,'ro','MarkerFaceColor','r');
hcu = hCnt;
h
end
⛳️ 运行结果
🔗 参考文献
[1] 曾志华,钱雪忠.基于DCT和SVD联合的数字水印算法[J].计算机工程与设计, 2007.DOI:10.3969/j.issn.1000-7024.2007.01.036.
[2] 曾志华,钱雪忠.基于DCT和SVD联合的数字水印算法[J].计算机工程与设计, 2007, 028(001):109-111.
[3] 刘俊景,蒋华.一种基于离散余弦变换与奇异值分解的数字图像水印算法[C]//2007年全国开放式分布与并行计算机学术会议论文集(下册).2007.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类