✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 概述
图像去噪是图像处理领域的重要研究方向之一,其目的是去除图像中存在的噪声,提高图像质量。近年来,随着图像采集技术的发展,图像去噪技术得到了广泛的应用。本文将介绍几种常用的图像去噪算法,并对它们的性能进行比较。
2. 噪声模型
图像噪声主要包括高斯噪声、椒盐噪声和脉冲噪声等。高斯噪声是图像采集过程中产生的随机噪声,其概率密度函数服从高斯分布。椒盐噪声是由图像采集或传输过程中产生的孤立像素点,其值通常为最大值或最小值。脉冲噪声是由图像采集或传输过程中产生的尖峰噪声,其值通常远大于或远小于图像像素值的正常范围。
3. 图像去噪算法
3.1 均值滤波
均值滤波是一种简单的线性滤波方法,其原理是使用一个固定大小的窗口对图像进行平滑处理,窗口内所有像素点的平均值作为中心像素点的输出值。均值滤波可以有效地去除高斯噪声,但它也会使图像的细节信息丢失。
3.2 中值滤波
中值滤波是一种非线性滤波方法,其原理是使用一个固定大小的窗口对图像进行平滑处理,窗口内所有像素点的中值作为中心像素点的输出值。中值滤波可以有效地去除椒盐噪声,但它也会使图像的边缘信息模糊。
3.3 高斯低通滤波
高斯低通滤波是一种线性滤波方法,其原理是使用一个高斯函数作为滤波器,对图像进行平滑处理。高斯低通滤波可以有效地去除高斯噪声,但它也会使图像的细节信息丢失。
3.4 硬阈值去噪
硬阈值去噪是一种非线性去噪方法,其原理是将图像像素值与一个阈值进行比较,大于阈值的像素值保留,小于阈值的像素值设置为0。硬阈值去噪可以有效地去除椒盐噪声,但它也会使图像的边缘信息模糊。
3.5 软阈值去噪
软阈值去噪是一种非线性去噪方法,其原理是将图像像素值与一个阈值进行比较,大于阈值的像素值减去阈值,小于阈值的像素值设置为0。软阈值去噪可以有效地去除高斯噪声,但它也会使图像的细节信息丢失。
3.6 半软硬阈值去噪
半软硬阈值去噪是一种非线性去噪方法,其原理是将图像像素值与一个阈值进行比较,大于阈值的像素值减去阈值,小于阈值的像素值设置为0,介于两者之间的像素值进行线性缩放。半软硬阈值去噪可以有效地去除高斯噪声和椒盐噪声,但它也会使图像的细节信息丢失。
3.7 广义小波阈值去噪
广义小波阈值去噪是一种非线性去噪方法,其原理是将图像分解为小波系数,对小波系数进行阈值处理,然后将处理后的系数进行重构。广义小波阈值去噪可以有效地去除各种类型的噪声,并保留图像的细节信息。
4. 结论
本文介绍了多种图像去噪算法,并对它们的性能进行了比较。实验结果表明,广义小波阈值去噪算法的性能最好,其次是半软硬阈值去噪算法和软阈值去噪算法。均值滤波、中值滤波和高斯低通滤波的性能相对较差。在实际应用中,应根据图像的具体情况选择合适的去噪算法。
⛳️ 运行结果
🔗 参考文献
[1] 陈立.微光ICCD数字图像去噪的研究[D].长春理工大学,2013.
[2] 杨会云.基于最小错误率贝叶斯决策和平滑滤波的图像去噪算法研究[D].河北师范大学[2024-05-05].DOI:10.7666/d.d124970.
[3] 彭姝姝.基于均值滤波和小波变换的图像去噪[J].现代计算机, 2019.DOI:CNKI:SUN:XDJS.0.2019-12-015.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类