【图像去噪】基于均值+中值+高斯低通+硬阈值+软阈值+半软硬硬阈值+广义小波阈值多种算法实现图像去噪PSNR和MSE附Matlab代码

本文详细介绍了图像去噪的各种算法,包括均值滤波、中值滤波、高斯低通滤波、硬阈值去噪、软阈值去噪、半软硬阈值去噪和广义小波阈值去噪,对比了它们在去除不同类型的噪声(如高斯噪声、椒盐噪声和脉冲噪声)方面的效果。结论指出广义小波阈值去噪表现最优,适合实际应用。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. 概述

图像去噪是图像处理领域的重要研究方向之一,其目的是去除图像中存在的噪声,提高图像质量。近年来,随着图像采集技术的发展,图像去噪技术得到了广泛的应用。本文将介绍几种常用的图像去噪算法,并对它们的性能进行比较。

2. 噪声模型

图像噪声主要包括高斯噪声、椒盐噪声和脉冲噪声等。高斯噪声是图像采集过程中产生的随机噪声,其概率密度函数服从高斯分布。椒盐噪声是由图像采集或传输过程中产生的孤立像素点,其值通常为最大值或最小值。脉冲噪声是由图像采集或传输过程中产生的尖峰噪声,其值通常远大于或远小于图像像素值的正常范围。

3. 图像去噪算法

3.1 均值滤波

均值滤波是一种简单的线性滤波方法,其原理是使用一个固定大小的窗口对图像进行平滑处理,窗口内所有像素点的平均值作为中心像素点的输出值。均值滤波可以有效地去除高斯噪声,但它也会使图像的细节信息丢失。

3.2 中值滤波

中值滤波是一种非线性滤波方法,其原理是使用一个固定大小的窗口对图像进行平滑处理,窗口内所有像素点的中值作为中心像素点的输出值。中值滤波可以有效地去除椒盐噪声,但它也会使图像的边缘信息模糊。

3.3 高斯低通滤波

高斯低通滤波是一种线性滤波方法,其原理是使用一个高斯函数作为滤波器,对图像进行平滑处理。高斯低通滤波可以有效地去除高斯噪声,但它也会使图像的细节信息丢失。

3.4 硬阈值去噪

硬阈值去噪是一种非线性去噪方法,其原理是将图像像素值与一个阈值进行比较,大于阈值的像素值保留,小于阈值的像素值设置为0。硬阈值去噪可以有效地去除椒盐噪声,但它也会使图像的边缘信息模糊。

3.5 软阈值去噪

软阈值去噪是一种非线性去噪方法,其原理是将图像像素值与一个阈值进行比较,大于阈值的像素值减去阈值,小于阈值的像素值设置为0。软阈值去噪可以有效地去除高斯噪声,但它也会使图像的细节信息丢失。

3.6 半软硬阈值去噪

半软硬阈值去噪是一种非线性去噪方法,其原理是将图像像素值与一个阈值进行比较,大于阈值的像素值减去阈值,小于阈值的像素值设置为0,介于两者之间的像素值进行线性缩放。半软硬阈值去噪可以有效地去除高斯噪声和椒盐噪声,但它也会使图像的细节信息丢失。

3.7 广义小波阈值去噪

广义小波阈值去噪是一种非线性去噪方法,其原理是将图像分解为小波系数,对小波系数进行阈值处理,然后将处理后的系数进行重构。广义小波阈值去噪可以有效地去除各种类型的噪声,并保留图像的细节信息。

4. 结论

本文介绍了多种图像去噪算法,并对它们的性能进行了比较。实验结果表明,广义小波阈值去噪算法的性能最好,其次是半软硬阈值去噪算法和软阈值去噪算法。均值滤波、中值滤波和高斯低通滤波的性能相对较差。在实际应用中,应根据图像的具体情况选择合适的去噪算法。

⛳️ 运行结果

🔗 参考文献

[1] 陈立.微光ICCD数字图像去噪的研究[D].长春理工大学,2013.

[2] 杨会云.基于最小错误率贝叶斯决策和平滑滤波的图像去噪算法研究[D].河北师范大学[2024-05-05].DOI:10.7666/d.d124970.

[3] 彭姝姝.基于均值滤波和小波变换的图像去噪[J].现代计算机, 2019.DOI:CNKI:SUN:XDJS.0.2019-12-015.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值