✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
步行是人类最基本的运动方式之一,也是城市交通的重要组成部分。近年来,随着人工智能技术的飞速发展,如何利用数学模型和计算机技术模拟和预测人类步行行为,成为了一个重要的研究课题。本文将介绍一种基于全球人类步行模型和实时运动学拟人化的步行模拟方法,并探讨其在城市交通规划、人机交互等领域的应用前景。
全球人类步行模型
全球人类步行模型 (Global Pedestrian Model, GPM) 是一个基于大量行人轨迹数据构建的统计模型,可以用于模拟不同人群在不同环境下的步行行为。GPM 模型包含了行人的速度、方向、加速度等运动学参数,以及行人之间的相互作用等社会学参数。通过对这些参数进行建模,可以模拟出逼真的行人步行行为。
实时运动学拟人化
实时运动学拟人化 (Real-time Kinematic Humanization, RKH) 是一种将人类运动学数据应用于计算机图形学的方法。RKH 技术可以将真实的人类运动数据应用于虚拟角色,使其能够像真人一样进行行走、跑步、跳跃等动作。
步行模拟方法
本文提出的步行模拟方法将 GPM 模型和 RKH 技术结合起来,可以模拟出更加逼真的行人步行行为。具体步骤如下:
-
使用 GPM 模型模拟行人的运动学参数,包括速度、方向、加速度等。
-
将模拟出的运动学参数应用于 RKH 技术,生成虚拟角色的步行动画。
-
将虚拟角色的步行动画与城市环境模型结合起来,模拟行人在城市中的步行行为。
应用前景
该方法可以应用于以下领域:
-
城市交通规划:通过模拟行人步行行为,可以优化城市交通设施的设计,例如人行横道、人行天桥等。
-
人机交互:通过模拟行人步行行为,可以开发更加智能的人机交互系统,例如自动驾驶汽车、智能机器人等。
-
虚拟现实:通过模拟行人步行行为,可以创建更加逼真的虚拟现实场景,例如虚拟城市、虚拟旅游等。
总结
本文介绍了一种基于全球人类步行模型和实时运动学拟人化的步行模拟方法,并探讨了其在城市交通规划、人机交互等领域的应用前景。该方法可以模拟出更加逼真的行人步行行为,为城市交通规划、人机交互等领域提供重要的技术支持。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类