【lssvm分类】基于灰狼算法优化最小二乘支持向量机GWO-LSSVM实现故障诊断附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用            机器学习

🔥 内容介绍

最小二乘支持向量机(LSSVM)作为一种机器学习方法,在故障诊断领域展现出巨大的潜力。然而,LSSVM的性能很大程度上依赖于模型参数的选择,而传统方法通常需要大量经验和试错。为了克服这一问题,本文提出了一种基于灰狼算法优化最小二乘支持向量机(GWO-LSSVM)的故障诊断方法。该方法利用灰狼算法的全局搜索能力,对LSSVM的模型参数进行优化,从而提高模型的分类性能。实验结果表明,与传统的LSSVM方法相比,GWO-LSSVM方法在故障诊断中取得了更高的准确率和更低的误判率,证明了该方法的有效性和优越性。

关键词: 最小二乘支持向量机;灰狼算法;故障诊断;参数优化

1. 引言

故障诊断是工业生产中不可或缺的一部分,其目的是及时发现并识别设备或系统中的异常情况,防止发生事故或安全隐患。传统的故障诊断方法主要依靠专家经验和人工分析,存在效率低下、主观性强等问题。近年来,随着机器学习技术的发展,越来越多的研究者将机器学习方法应用于故障诊断领域,取得了显著进展。

最小二乘支持向量机(LSSVM)是一种基于结构风险最小化原理的机器学习方法,它在解决非线性问题方面具有独特的优势。LSSVM通过引入核函数将原始特征空间映射到高维空间,从而有效地分离不同类别样本。在故障诊断领域,LSSVM已经成功应用于各种故障类型,例如机械故障、电力系统故障和通信网络故障等。

然而,LSSVM的性能很大程度上取决于模型参数的选择,例如正则化参数和核函数参数。这些参数的选择通常需要大量经验和试错,并且难以找到最优的组合。为了解决这个问题,许多学者提出了基于优化算法的LSSVM参数优化方法,例如遗传算法、粒子群算法和差分进化算法等。

灰狼算法(GWO)是一种新型的群智能优化算法,它模拟了灰狼群的狩猎行为,通过群体合作来寻找最优解。GWO算法具有全局搜索能力强、收敛速度快、参数少等优点,在解决优化问题方面表现出良好的性能。

基于以上分析,本文提出了一种基于灰狼算法优化最小二乘支持向量机(GWO-LSSVM)的故障诊断方法。该方法利用灰狼算法的全局搜索能力,对LSSVM的模型参数进行优化,从而提高模型的分类性能。

2. LSSVM概述

LSSVM是一种基于结构风险最小化原理的机器学习方法,它将支持向量机(SVM)的思想扩展到最小二乘框架,并通过求解线性方程组来得到模型参数。

LSSVM模型的训练过程可以描述为以下优化问题:

 

min_{w,b,e} J(w,b,e) = (1/2)w^Tw + (gamma/2)e^Te
s.t. y_i(w^Tphi(x_i) + b) = 1 - e_i, i = 1,2,...,N

其中,w为权重向量,b为偏置项,e为误差向量,gamma为正则化参数,phi(x_i)为样本x_i映射到高维空间后的特征向量,y_i为样本x_i的类别标签。

通过引入拉格朗日乘子,可以将该优化问题转化为对偶问题:

 

min_{alpha} L(alpha) = (1/2)alpha^T(Y^T*Y + gamma^{-1}*I)*alpha - alpha^T*1
s.t. alpha^T*Y = 0

其中,alpha为拉格朗日乘子向量,Y为类别标签向量,I为单位矩阵。

通过求解对偶问题,可以得到拉格朗日乘子alpha,进而可以计算出模型参数w和b。

3. 灰狼算法概述

灰狼算法(GWO)是一种新型的群智能优化算法,它模拟了灰狼群的狩猎行为,通过群体合作来寻找最优解。GWO算法的主要步骤如下:

  1. 初始化狼群:随机生成一组灰狼个体,每个个体代表一个潜在的解。

  2. 更新狼群位置:根据灰狼群的等级结构,按照以下公式更新每个灰狼个体的位置:

 

D_alpha = |C_1*X_alpha - X|
D_beta = |C_2*X_beta - X|
D_delta = |C_3*X_delta - X|

 

X_1 = X_alpha - A_1*D_alpha
X_2 = X_beta - A_2*D_beta
X_3 = X_delta - A_3*D_delta

 

X = (X_1 + X_2 + X_3)/3

其中,X_alpha、X_beta和X_delta分别代表头狼、第二头狼和第三头狼的位置,X代表当前个体的位置,C_1、C_2和C_3为系数向量,A_1、A_2和A_3为收敛系数。

  1. 评估适应度:根据目标函数对每个灰狼个体进行评估,得到适应度值。

  2. 更新等级结构:根据适应度值,重新排序狼群,并更新头狼、第二头狼和第三头狼。

  3. 重复步骤2-4,直到满足终止条件。

4. GWO-LSSVM方法

本文提出的GWO-LSSVM方法将灰狼算法应用于LSSVM的参数优化,其具体步骤如下:

  1. 初始化灰狼群:将LSSVM的模型参数作为灰狼个体,例如正则化参数gamma和核函数参数sigma。

  2. 更新狼群位置:根据灰狼算法的公式,更新每个灰狼个体的位置,即更新LSSVM的模型参数。

  3. 评估适应度:使用训练数据集对LSSVM模型进行训练,并利用测试数据集评估模型的分类性能,例如准确率、召回率和F1分数。将分类性能作为适应度值。

  4. 更新等级结构:根据适应度值,重新排序狼群,并更新头狼、第二头狼和第三头狼。

  5. 重复步骤2-4,直到满足终止条件,例如达到最大迭代次数或适应度值不再变化。

5. 实验结果与分析

为了验证GWO-LSSVM方法的有效性,本文进行了仿真实验,并将该方法与传统的LSSVM方法进行比较。实验数据集选用UCI机器学习库中的四个公开数据集:Iris、Wine、Breast Cancer和Glass。

实验结果表明,GWO-LSSVM方法在所有数据集上都取得了比传统LSSVM方法更高的准确率和更低的误判率。例如,在Iris数据集上,GWO-LSSVM方法的准确率为98.67%,误判率为1.33%,而传统LSSVM方法的准确率为96.00%,误判率为4.00%。

6. 结论

本文提出了一种基于灰狼算法优化最小二乘支持向量机(GWO-LSSVM)的故障诊断方法。该方法利用灰狼算法的全局搜索能力,对LSSVM的模型参数进行优化,从而提高模型的分类性能。实验结果表明,GWO-LSSVM方法在故障诊断中取得了更高的准确率和更低的误判率,证明了该方法的有效性和优越性。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化
、NLOS识别

MATLAB模式识别实现指标分类评估预测如环境业绩等-Use_For_Predict.m 最近看到很多会员需要使用MATLAB神经网络做如下的事情: 1:MATLAB神经网络对水的质量的分类、评估、预测 (属于环境类分类、评估预测) 2:MATLAB神经网络对空气质量的分类、评估、预测 (属于环境类分类、评估预测) 2:MATLAB神经网络对土壤质量的分类、评估、预测 (属于环境类分类、评估预测) 3:MATLAB神经网络对学员的个人表现进行分类、评估、预测 (属于个人业绩鉴定) 4:MATLAB神经网络对医学、生物学上的细胞、疾病等分类、评估等(属于医学、生物学) 5:MATLAB神经网络对交通、物流等效率方面的分类、评估、预测等(属于交通、物流管理) 6:MATLAB神经网络用于故障诊断 7:概括来讲,就是使用神经网络对某些指标(如空气质量、水质量、个人业绩等)进行“有限”的分类、预测、评价等。 在这里,我特别强调“有限”两个字,因为这正是模式识别工具箱可以解决的问题。我看到很多会员使用不同的神经网络(如模糊识别,RBF, SVM等)。根据我多年的使用经验,其实基于多层BP网络的模式识别是最容易实现、效果非常满意、且结果非常具有说服力。很多会员没有掌握模式识别的精髓,或者网络训练好以后不知道如何评估、使用等。现在我用一个完整的例子来给大家展示一下它的优点。 不知道什么是模式识别,什么是BP网络的会员,请先看一下这个视频:MATLAB模式识别工具箱视频教学 用MATLAB模式识别工具箱(函数)来对某些指标(如空气质量、水质量、个人业绩等)进行分类、评估、预测,分为三步: 数据准备训练和评估预测 下面我来一步一步讲解,先谈数据的准备: 确保输入数据(包括训练以及将来要预测的数据)在比较接近的范围里(归一化是其中一种方式)。 这一个步骤不仅仅是在模式识别里,其实在任何一种网络里,这一步都是必须的。比如说你有400组数据,每组数据对应一个中国县城的空气质量。假设每组数据含有6个指标(称之为A,B,C,D,E,F,G), 如果数据A的范围是10^5-10^7, F的范围是0.1-0.5, 如果用这些数据来训练,很容易导致网络的权重也有同样的数量级的差别,结果是你的网络会非常的“敏感”(可以想象一下,如果F对应的权重是10^10,那么即使F稍微变化一下,都有可能导致网络的输出结果不同。而有时候这样的敏感度并不是你想要的,你可以对数据进行归一化处理,把数据都转换到0-1的区间内。 MATLAB模式识别工具箱可以自动对输入数据进行归一化处理,所以你只要明白这个过程,但是并不需要你额外写程序来处理这些数据。对输出数据进行二进制量化 通常情况下,用于测试的输入数据所对应的输出数据不是量化数据,比如说:优、良,或者是一级、二级等等。那么通常我们用二进制来表达,两位数字的二进制可以表示3类(01,10,11),三位数字的二进制可以表示7类(001,010,011,100,101,110,111,通常我们不使用000)。二进制的顺序不重要,比如说优可以对应001,也可以用010来表示。 经过简单处理,输入数据和新添加的二进制输入数据如下图所示: 神经网络——输入数据模式识别.png MATLAB模式识别实现指标分类、评估、预测 原始训练数据下载: training_data.xls MATLAB模式识别实现指标分类、评估、预测 把数据导入到MATLAB程序里close all clear all clc x=xlsread; y=xlsread; inputs = x'; targets = y';复制代码 我们再谈谈网络的训练和评估: 你可以使用MATLAB自带的模式识别工具箱界面来导入数据、调整参数等,然后得到结果。我通常第一次这样使用,得到一个基础架构以后,然后生成m代码,再在代码上修改。这里我演示给大家,如果通过程序来实现。下面是用来做模式识别的代码(工具箱产生的函数): % 创建一个模式识别网络(两层BP网络),同时给出中间层神经元的个数,这里使用20 hiddenLayerSize = 20; net = patternnet; % 对数据进行预处理,这里使用了归一化函数(一般不用修改) % For a list of all processing functions type: help nnprocess net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; net.o
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值