✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
1. 引言
雷达辐射源识别是电子战、情报侦察等领域的重要研究方向,其目的是识别雷达信号的类型、发射源等信息。随着现代雷达技术的快速发展,雷达信号的种类和数量急剧增加,传统的雷达辐射源识别方法面临着巨大挑战。例如,基于特征提取的方法依赖于人工设计的特征,难以提取出能够有效区分不同类型雷达信号的特征,且容易受到环境噪声的影响。
卷积神经网络(CNN)凭借其强大的特征提取能力,在图像识别、语音识别等领域取得了巨大成功,也逐渐应用于雷达辐射源识别领域。CNN可以自动学习雷达信号的特征,无需人工设计特征,具有更高的识别精度和鲁棒性。然而,CNN模型的训练过程通常需要大量的训练样本,而实际应用中雷达辐射源信号样本获取难度较大,这限制了CNN模型在实际中的应用。
为了解决这一问题,本文提出了一种基于阿基米德优化算法(AOA)的雷达辐射源识别方法。AOA算法是一种新型的元启发式优化算法,其灵感来自于阿基米德螺旋线的特性,具有良好的全局搜索能力和局部搜索能力,能够有效地优化CNN模型的权重参数。该方法利用AOA算法优化CNN模型的权重参数,有效地提高了模型的识别精度,同时减少了对训练样本的需求量。
2. 相关工作
近年来,深度学习技术在雷达辐射源识别领域取得了显著进展。文献[1]提出了一种基于深度卷积神经网络的雷达辐射源识别方法,该方法通过对雷达信号进行时频变换,将信号转换为图像,然后利用CNN模型进行识别。文献[2]提出了一种基于深度循环神经网络的雷达辐射源识别方法,该方法利用RNN模型对雷达信号的时间序列特征进行学习,能够有效地识别具有时间相关性的雷达信号。
然而,现有的深度学习方法通常需要大量的训练样本,而实际应用中雷达辐射源信号样本获取难度较大,这限制了深度学习方法在实际中的应用。因此,如何提高深度学习模型在少量训练样本下的识别精度成为当前研究的热点问题。
3. 基于AOA的CNN模型优化
3.1 AOA优化CNN模型
本文利用AOA算法优化CNN模型的权重参数,具体步骤如下:
- 初始化CNN模型:随机初始化CNN模型的权重参数。
- 利用AOA算法更新权重参数:将CNN模型的权重参数作为AOA算法的优化变量,通过AOA算法进行优化。
- 评估模型性能:利用训练集和测试集评估优化后的CNN模型的识别精度。
- 重复步骤2和3,直到满足停止条件。
⛳️ 运行结果



🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类