【WSN定位】基于Matlab模拟Dv-hop定位,含误差 节点分布图

 ✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

一、引言

无线传感器网络 (WSN) 作为一种新兴的无线通信技术,近年来在环境监测、灾害预警、智能家居等领域得到广泛应用。节点定位是 WSN 中一项重要的基础性技术,它为各种应用提供了位置信息,例如目标追踪、区域覆盖、路径规划等。DV-hop 算法是一种基于距离向量路由的节点定位算法,因其实现简单、成本低廉等优势,在 WSN 节点定位中得到了广泛应用。

然而,DV-hop 算法也存在一些缺点,例如:

  • 误差积累: 由于算法基于跳数估计节点间的距离,而跳数本身存在误差,误差会随着节点间距离的增加而累积。

  • 节点分布影响: 节点分布不均匀或存在密集区域会导致跳数估计误差增大,进而影响定位精度。

本文将对 DV-hop 算法进行模拟,并探讨其误差产生的原因,以及节点分布对其定位精度的影响。

二、DV-hop 算法原理

DV-hop 算法的基本思想是利用已知位置的锚节点,通过跳数估计节点间距离,并利用三边测量定位未知节点。算法步骤如下:

  1. 锚节点广播: 锚节点广播包含自身位置信息的报文,报文内容包括节点 ID 和坐标。

  2. 跳数统计: 其他节点收到锚节点报文后,记录自身到该锚节点的跳数。

  3. 距离估计: 利用跳数和预先定义的平均跳距,估计节点间距离。

  4. 三边测量定位: 利用至少三个锚节点的距离信息,通过三边测量方法计算未知节点的坐标。

三、模拟环境搭建

为了模拟 DV-hop 算法,我们使用 Python 语言搭建了一个仿真环境。该环境包含以下组件:

  • 节点类: 表示网络中的节点,包含节点 ID、坐标、邻居节点、跳数信息等属性。

  • 锚节点类: 继承自节点类,表示已知位置的节点。

  • 距离计算函数: 计算节点间距离,可根据需要选择不同的距离度量方法。

  • 定位函数: 实现 DV-hop 算法,根据跳数和距离信息定位未知节点。

四、模拟结果分析

1. 误差分析

为了分析 DV-hop 算法的误差,我们进行了以下实验:

  • 固定节点分布: 将 100 个节点随机分布在一个 100m × 100m 的区域内,其中 10 个节点作为锚节点。

  • 改变跳距: 在不同跳距下进行定位实验,并记录每个节点的定位误差。

实验结果表明,跳距越小,定位误差越小;跳距越大,定位误差越大。这是因为跳数估计误差会随着跳距的增大而放大。

2. 节点分布影响

为了分析节点分布对 DV-hop 算法定位精度的影响,我们进行了以下实验:

  • 随机节点分布: 随机生成不同的节点分布模式,例如均匀分布、聚类分布等。

  • 固定跳距: 在相同的跳距下进行定位实验,并记录每个节点的定位误差。

实验结果表明,节点分布对定位精度有较大影响。当节点分布均匀时,定位精度较高;当节点分布不均匀,例如存在密集区域时,定位精度会降低。这是因为节点密集区域的跳数估计误差会更大,进而影响定位结果。

五、节点分布图

为了更直观地展示节点分布对 DV-hop 算法定位精度的影响,我们绘制了以下节点分布图:

  • 图 1: 均匀分布节点的定位误差分布图。

  • 图 2: 聚类分布节点的定位误差分布图。

通过比较图 1 和图 2,我们可以看到,在节点均匀分布的情况下,定位误差相对较小,误差分布也较为均匀;而在节点聚类分布的情况下,定位误差较大,并且在密集区域的误差更大。

六、结论

本文通过模拟 DV-hop 算法,分析了其误差产生的原因,以及节点分布对其定位精度的影响。实验结果表明,跳距的大小和节点分布都会影响 DV-hop 算法的定位精度。为了提高 DV-hop 算法的定位精度,可以采用以下措施:

  • 优化跳距: 通过实验或分析数据确定最佳跳距,尽量减少跳数估计误差。

  • 改进节点分布: 尽量保证节点均匀分布,避免出现密集区域。

  • 结合其他定位算法: 将 DV-hop 算法与其他定位算法结合,例如三边测量算法、质心算法等,以提高定位精度。

七、展望

未来,DV-hop 算法的研究方向主要包括:

  • 提高定位精度: 研究新的算法和技术来降低跳数估计误差,提高 DV-hop 算法的定位精度。

  • 扩展应用范围: 将 DV-hop 算法应用到更复杂的场景中,例如动态网络、移动节点等。

  • 结合深度学习: 将深度学习技术引入 DV-hop 算法,利用数据驱动的方法来提升定位精度。

⛳️ 运行结果

📣 部分代码

clear;close all;%产生随机点,使其分布C=100.*rand(2,200); %实验一设定DV0(200,40,20,C);error=zeros(1,40);num=zeros(1,40);for i=3:42 error(i-2)=DV0(200,i,20,C); num(i-2)=i;

🔗 参考文献

[1] 赵江运.无线传感器网络非基于测距定位算法研究[D].西南交通大学,2014.

[2] 孟雯雯.基于DV-Hop无线传感器网络定位算法研究[D].曲阜师范大学[2024-07-19].DOI:CNKI:CDMD:2.1017.191962.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值