✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
本文探讨了自适应模糊滑模控制(AFSMC)在Sawyer 4自由度机械臂中的应用。该控制策略将模糊逻辑控制的灵活性与滑模控制的鲁棒性相结合,以实现机械臂的精确轨迹跟踪。本文首先介绍了机械臂的动力学模型,并详细阐述了PID控制、传统滑模控制以及自适应模糊滑模控制等三种控制策略。随后,以MATLAB仿真平台为基础,搭建了Sawyer 4自由度机械臂的动力学模型,并分别实现了上述三种控制策略,最终通过对比分析,验证了自适应模糊滑模控制策略在轨迹跟踪精度、鲁棒性以及抗干扰能力方面的优越性。
关键词:自适应模糊滑模控制,Sawyer机械臂,轨迹跟踪,MATLAB仿真
1. 引言
近年来,随着工业自动化程度的不断提高,机器人技术得到了广泛的应用。机械臂作为机器人系统的重要组成部分,其控制技术的研究也成为了热点。传统的PID控制虽然简单易行,但其鲁棒性较差,难以应对复杂环境中的干扰。滑模控制具有鲁棒性强、对参数变化不敏感等优点,但其控制信号存在抖振现象。为了克服上述问题,近年来,自适应模糊滑模控制(AFSMC)技术得到了快速发展。AFSMC将模糊逻辑控制的灵活性与滑模控制的鲁棒性相结合,能够有效地提高机械臂的控制性能。
Sawyer机械臂是一款轻型协作机器人,其具有高精度、高灵活性、易于操作等特点,在工业生产、科研教育等领域有着广泛的应用前景。本文以Sawyer 4自由度机械臂为研究对象,探讨了AFSMC在轨迹跟踪控制中的应用,并通过MATLAB仿真验证了其有效性。
2. Sawyer 4自由度机械臂动力学模型
3. 控制策略
本文主要研究了三种控制策略:
-
PID控制: 利用比例(P)、积分(I)和微分(D)三个参数来控制系统的输出,简单易行,但鲁棒性较差。
-
传统滑模控制: 通过设计滑模面,将系统状态约束在滑模面上,并利用切换控制律来克服干扰,具有较强的鲁棒性,但存在抖振问题。
-
自适应模糊滑模控制: 利用模糊逻辑控制器在线调整滑模控制律中的参数,从而提高控制系统的鲁棒性和适应性,同时有效地抑制抖振。
4. MATLAB仿真
本文利用MATLAB仿真平台搭建了Sawyer 4自由度机械臂的动力学模型,并分别实现了上述三种控制策略,最终通过对比分析,验证了自适应模糊滑模控制策略的有效性。仿真结果表明,与PID控制和传统滑模控制相比,自适应模糊滑模控制策略具有更高的轨迹跟踪精度、更强的鲁棒性以及更优的抗干扰能力。
5. 结论
本文研究了自适应模糊滑模控制在Sawyer 4自由度机械臂中的应用,并通过MATLAB仿真验证了其有效性。研究结果表明,自适应模糊滑模控制策略可以有效地提高机械臂的轨迹跟踪精度、鲁棒性和抗干扰能力。未来将进一步研究更复杂的机械臂系统,并探讨其他控制策略的应用,以实现更高效、更智能的机器人控制。
6. 代码示例
% -------------------------------------------------
% 自适应模糊滑模控制器
% Sawyer 4自由度机械臂
% -------------------------------------------------
%
% 此代码已在MATLAB 2021a上测试
%%
clc; clear all;
addpath(genpath('.'));
% 1:PID 2:FC_SIGN 3:FC_SAT 4: FSMC 5: AFSMC
control_mode = 5;
n=4;
% 加载模糊模型
ffis = readfis("fis\FSMC");
affis = readfis("fis\AFSMC");
%%% 增益参数
Kp = diag([500 1000 2000 2000]);
Ki = diag([5 5 5 5]*100);
Kd = diag([5 5 5 5]*10);
FC_SIGN.L = [35 35 10 15];
FC_SAT.L = [35 35 10 15];
FSMC.L = [500 500 100 50];
%%% 仿真时间
sim_time = 10;
sim_period = 0.001;
t = 0:sim_period:sim_time;
sample_size = size(t, 2);
%%% 外部力矩
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类